Return to search

Effects of Brevibacillus laterosporus and live yeast on rumen fermentation, nutrient digestibility and microbial protein synthesis

This study investigated the effects of Brevibacillus laterosporus and live yeast (LY) on rumen fermentation, nutrient digestibility and microbial protein synthesis. The basal diet was a total mixed ration formulated to fulfil the minimum nutrient requirement of early lactating 600 kg Holstein cow producing 40kg of milk with 3.5 % fat and 3.3 % protein using CPM-dairy software (NRC, 2001). Treatments were: T1 (Control: basal diet with no additive), T2 (Basal diet + Brevibacillus laterosporus), T3 (Basal diet + Live yeast), and T4 (Basal diet + Brevibacillus laterosporus + Live yeast). In situ degradation, in vitro batch fermentation were performed. Data obtained were subjected to analysis of variance (ANOVA) using PROC GLM (SAS Institute, 2009). The effective dry matter (DM) degradability evaluated at low (0.02) and medium (0.05) ruminal passage rate (ED1 and ED2) were higher (p<0.05) in T1 compared to T2 and T3, but did not differ (p>0.05) between T2, T3 and T4, and between T1 and T4. When evaluated at fast passage rate (0.08) the effective DM degradability (ED3) was higher (p<0.05) in T1 compared to T3 and T4, but did not differ (p>0.05) between T1 and T2. The difference in ammonia nitrogen production was observed only between T1 and T2, and was higher (p<0.05) in T1. The total VFA’s concentration was higher (p<0.05) in T3 compared to the control.
All additives decreased the molar percentage of acetate (P<0.05). The concentration of acetate was lower (p<0.05) in T3 and T4 compared to control. Propionate concentration was higher (p<0.05) in T3 and T4 compared to other treatments and lower (p<0.05) in the control compared to the rest of treatments. Butyrate concentration was higher (p<0.05) in T2 and T4 compared to the rest of the treatments, and lower (p<0.05) in T3 than other treatments. The microbial protein synthesis measured as purine derivate done on residues was higher (p<0.05) for T3 compared to T1 and T2, but did not differ between T1, T2 and T4, and between T3 and T4. These results showed that the two additives have different individual effects on DM and CP degradability, but also associative effects in some fermentation parameters such as propionate production. / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:unisa/oai:uir.unisa.ac.za:10500/23002
Date11 1900
CreatorsAdeleke, Rasaq Ademola
ContributorsMuya, Claude Mukengela, Mbatha, Khanyisile R.
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
Format1 online resource (xiii, 79 leaves), application/pdf

Page generated in 0.0027 seconds