Roadside vegetation provides numerous environmental and psychological benefits to drivers. Previous studies have shown that natural landscapes can effectively lower crash rates and cause less stress and frustration to the driver. However, run-off-the-road crashes resulting in a collision with a tree are twice as likely to result in a fatality, thus reinforcing the need to examine the placement of vegetation within the clear zone. This study explores the relationship between the size of the clear zone and the presence of roadside vegetation on selected driver attributes, including both driver speed and lateral positioning. To evaluate the effect on the driver speed selection process, a static evaluation was employed. Completed by more than 100 drivers, the static evaluation was utilized to gather speed selections on both real and virtual roads containing four combinations of clear zone size and roadside vegetation density. Additionally, field data was collected to validate the findings of the static evaluation and to determine the extent to which roadside vegetation impacts driving attributes. When presented with a large clear zone, drivers positioned the vehicle further from the edge of the road as the vegetation density increased. Furthermore, the speeds observed in the field correlated with the speeds that participants selected when watching a video of the same road. Finally, the UMassSafe Traffic Safety Data Warehouse was utilized to link crash and roadway data, allowing for an in-depth analysis of run-off-the-road (ROR) crash severity. The results of this study further demonstrate the nature of the relationship between clear zone design and driver behavior.
Identifer | oai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-2174 |
Date | 01 January 2013 |
Creators | Fitzpatrick, Cole D |
Publisher | ScholarWorks@UMass Amherst |
Source Sets | University of Massachusetts, Amherst |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses 1911 - February 2014 |
Page generated in 0.0023 seconds