Return to search

Modified iterative Runge-Kutta-type methods for nonlinear ill-posed problems

This work is devoted to the convergence analysis of a modified Runge-Kutta-type
iterative regularization method for solving nonlinear ill-posed problems under a priori and a posteriori stopping rules. The convergence rate results of the proposed method can be obtained under Hölder-type source-wise condition if the Fréchet derivative is properly scaled and locally Lipschitz continuous. Numerical results are achieved by using the Levenberg-Marquardt and Radau methods.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:7083
Date January 2014
CreatorsPornsawad, Pornsarp, Böckmann, Christine
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0021 seconds