Return to search

The effects of relative speed on selected physiological, kinematic and psychological responses at walk-to-run and run-to-walk interfaces.

[Conclusions] l) The two forms of human locomotion, walking and running, are distinctly different and in evaluating these gait patterns consideration must be given to this fact. 2) The impression created by the energy cost curves, that there is a single locomotor interface for both walking and running is a false one . There are two distinctly different locomotor interfaces, the walk-to-run interface and the run-to-walk interface. The former appears to correspond with the "metabolic intersection point" and therefore has some metabolic significance. The latter appears to be merely an "overshoot" of the walk-to-run interface and presently has no apparent metabolic significance. 3) Because the walk-to-run interface speed corresponds with the intersection point of the energy cost curves, physiological responses to walking and running at this speed do not differ significantly. However, cadence and stride length patterns for these two locomotor patterns are distinctly different at this point. 4) The identification of single physiological or kinematic factors during perceptions of exertion in any given situation is an extremely difficult if not impossible task. Perceived exertion should therefore be considered a multi-factorial concept and should be evaluated as such. 5) The use of relative speed as a technique for reducing inter-subject variability in physiological and kinematic factors is worthless unless diverse ranges in morphological linearity are a characteristic of one's subject pool

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:5164
Date January 1987
CreatorsCandler, Paul David
PublisherRhodes University, Faculty of Science, Human Kinetics and Ergonomics
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format291 p., pdf
RightsCandler, Paul David

Page generated in 0.0067 seconds