Notre capacité à communiquer et à apprécier la musique repose sur une discrimination de fréquences couvrant une large gamme de fréquences sonores. Cette propriété résulte de cellules mécanosensorielles « ciliées », qui sont réglées pour répondre de façon maximale à une fréquence caractéristique qui varie monotoniquement le long de l’axe de l’organe auditif, la cochlée. Les mécanismes cellulaires et moléculaires qui définissent la fréquence d’une cellule ciliée et régulent sa valeur pour différentes cellules afin de couvrir la gamme auditive demeurent néanmoins inconnus. Notre hypothèse de travail est que cette fréquence est réglée en partie par les propriétés mécaniques passives et actives de la « touffe ciliaire », l’antenne mécanosensorielle de la cellule ciliée. A l’aide d’une préparation excisée de la cochlée du rat, nous avons combiné l’iontophorèse de chélateurs de calcium (BAPTA ou EDTA) pour casser les liens de bout-de-cil qui connectent les stéréocils voisins de la touffe ciliaire, une stimulation grâce à un micro-jet de fluide pour estimer la raideur de la touffe ciliaire et des enregistrements en « patch-clamp » de courants de transduction afin de compter le nombre de liens de bout-de-cil intacts qui contribuent à la réponse. Avec les mouvements évoqués par la rupture des liens de bout-de-cil et avec nos mesures de raideur, nous avons pu estimer la tension dans toute la touffe ciliaire, ainsi que la tension dans un seul lien de bout-de-cil en connaissant le nombre de liens qui contribuent à cette tension. Dans les cellules ciliées externes, qui sont impliquées dans l’amplification du stimulus sonore mais qui n’envoient pas d’information neuronale au cerveau, nous avons observé un gradient de tension et de raideur lorsque la fréquence caractéristique de la cellule ciliée augmente, suggérant que ces paramètres physiques peuvent être impliqués dans le réglage d’une cellule ciliée à sa fréquence caractéristique. Au contraire, pour les cellules ciliées internes, les vraies cellules sensorielles de la cochlée, nos observations ne montrent pas de gradient significatif. De plus, nous avons observé des mouvements de la touffe ciliaire induits par la variation de la concentration en calcium, correspondant à une tension accrue pour des concentrations en calcium plus faibles. Ces mouvements sont similaires à ceux évoqués dans d’autres classes de vertébrés, tels que chez la grenouille ou chez la tortue. Ainsi, nos résultats réconcilient les expériences faites chez les vertébrés inférieurs et chez le mammifère, et montrent l’implication des gradients de la mécanique de la touffe ciliaire pour l’importante sélectivité fréquentielle de la cochlée / Our ability to communicate and appreciate music relies on acute frequency discrimination over a broad range of sound frequencies. This property results from the operation of mechanosensory “hair" cells, which are each tuned to respond maximally to a characteristic frequency that varies monotonically along the axis of the auditory organ, the cochlea. The cellular and molecular mechanisms that set the characteristic frequency of a hair cell and regulate its value among different cells to cover the auditory range have remained elusive. Our working hypothesis is that tuning results in part from passive and active mechanical properties of the “hair" bundle, the mechanosensory antenna of the hair cell.Using an excised preparation from the rat cochlea, we combined iontophoresis of a calcium chelator (BAPTA or EDTA) to break the tip links that interconnect neighbouring stereocilia of the hair-cell bundle, fluid-jet stimulation to estimate hair-bundle stiffness and patch-clamp recordings of transduction currents to count the number of intact transduction channels contributing to the response. From the movements evoked by tip-link breakage and our stiffness measurements, we were able to estimate tension in the whole hair bundle as well as, knowing the number of tip links contributing to this tension, in a single tip link.In outer hair cells, which are involved in sound amplification but do not send neural information to the brain, we observed a gradient of tension and stiffness from the low-frequency to the high-frequency end of the cochlea, suggesting that these physical parameters may help tune the hair cell to its characteristic frequency. Interestingly, with inner hair cells - the true sensors of the cochlea, our observations do not show any significant gradient. Furthermore, we observed calcium-evoked hair-bundle movements corresponding to an increased tension in the tip links at decreased concentrations of calcium. These movements were similar to those evoked in other classes of vertebrates, such as the frog or the turtle. Together, our results reconcile experiments performed in lower vertebrates with those performed in mammals and show the implication of hair-bundle mechanical gradients in the sharp frequency tuning of the cochlea
Identifer | oai:union.ndltd.org:theses.fr/2016USPCC183 |
Date | 25 November 2016 |
Creators | Tobin, Mélanie |
Contributors | Sorbonne Paris Cité, Martin, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0025 seconds