La reconstruction de champ source a pour but d’identifier le champ d’excitation en mesurant la réponse du système. Pour l’Holographie acoustique de champ proche (Near-field Acoustic Holography), la réponse du système (pression acoustique rayonnée) est mesurée sur un hologramme bidimensionnel utilisant un réseau de microphones et le champ source (le champ de vitesse acoustique) est reconstruit par une technique de rétropropagation effectuée dans le domaine des nombres d’ondes. L’objectif des travaux présentés est d’utiliser le même type de techniques pour reconstruire le champ de déplacement sur toute la surface d’une plaque en mesurant les vibrations sur des hologrammes à une dimension (lignes de mesures). Dans le domaine vibratoire, l’équation du mouvement de plaque implique la présence de 4 types d’ondes différents, deux étant purement évanescents. Ces derniers peuvent introduire des instabilités dans l’application de la méthode, notamment lorsque les hologrammes sont placés dans le champ lointain des efforts appliqués à la structure. La méthode présentée ici, appelée ”Holographie Vibratoire”, est particulièrement intéressante quand une mesure directe du champ de vitesse est impossible. L’holographie vibratoire permet également de séparer les sources dans le cas d’excitations multiples en les considérant comme des ondes allers ou retours. Il est alors possible d’isoler l’influence de chaque source et de quantifier notamment les champs d’intensités structurales que chacune d’elles génère. L’objectif de cette thèse est de présenter les principes de l’holographie Vibratoire, ses limites, ses applications et de les illustrer par des exemples sur plaque infinie, plaque appuyée et sur des résultats expérimentaux. / The source field reconstruction aims at identifying the excitation field measuring the response of the system. In Near-field Acoustic Holography, the response of the system (the radiated acoustic pressure) is measured on a hologram using a microphones array and the source field (the acoustic velocity field) is reconstructed with a back-propagation technique performed in the wave number domain. The objective of the present works is to use such a technique to reconstruct displacement field on the whole surface of a plate by measuring vibrations on a one-dimensional holograms. This task is much more difficult in the vibratory domain because of the complexity of the equation of motion of the structure. The method presented here and called "Structural Holography" is particularly interesting when a direct measurement of the velocity field is not possible. Moreover, Structural Holography decreases the number of measurements required to reconstruct the displacement field of the entire plate. This method permits to separate the sources in the case of multi-sources excitations by considering them as direct or back waves. It’s possible to compute the structural intensity of one particular source without the contributions of others sources. The aim of this PHD is to present the principles of Structural Holography, its limits, its applications and illustrate them with examples of infinite plate, supported plate and on experimental results.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEI127 |
Date | 24 November 2016 |
Creators | Chesnais, Corentin |
Contributors | Lyon, Totaro, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds