Made available in DSpace on 2016-06-02T20:06:01Z (GMT). No. of bitstreams: 1
2117.pdf: 990773 bytes, checksum: a7b62936541ab91d8ae3424f62aa0f40 (MD5)
Previous issue date: 2008-08-22 / In the financial market usually notices are taken of the shares
sequentially over the time in order to characterize them a time
series. However, the major interest is to forecast the behavior of these shares. Motivated by this fact, a lot of models were created based on the past information considering constant averages and variance over time. Although, in financial series a feature often presented is called volatility, which can be noticed by the variance
to vary in time. In order to catch this characteristic were developed the models of the family GARCH, that model the conditional variance through known information. These models were well used and have passed by many formulation modifications to be able to catch different effects, such as the effect leverage EGARCH. Thus, the goal is to estimate volatility patterns obeying the specifications of the family GARCH verifying which ones of them describe better the data inside and outside the sample. / No mercado financeiro costuma-se fazer observações sobre as
carteiras sequencialmente ao longo do tempo, caracterizando uma série temporal. Contudo, o maior interesse está em prever o comportamento destas carteiras. Motivado por este fato, foram criados muitos modelos de previsão baseando-se em observações passadas considerando a média e variância constantes no tempo. Porém, nas séries financeiras uma característica muito presente é a chamada volatilidade, que pode ser observada pela variância não constante no tempo. A fim de captar esta característica, desenvolveram-se os modelos da família GARCH, que modelam a variância condicional através de informações passadas. Estes
modelos foram muito utilizados e sofreram muitas modificações nas formulações para poderem captar diferentes efeitos, como o efeito de leverage (EGARCH). Assim, deseja-se estimar modelos de volatilidade obedecendo às especificações da família GARCH, verificando quais deles descrevem melhor os dados dentro e fora da amostra.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4525 |
Date | 22 August 2008 |
Creators | Ishizawa, Danilo Kenji |
Contributors | Moura, Maria Sílvia de Assis |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds