Return to search

Implication de la kinase Aurora B en hypertension artérielle pulmoraire

L'hypertension artérielle pulmonaire (HTAP) est une maladie vasculaire qui se caractérise par un remodelage des artères pulmonaires distales (APD). Cela conduit à une élévation de la pression sanguine ainsi qu'une résistance au niveau des artères pulmonaires entraînant une insuffisance cardiaque droite et la mort du patient. Aujourd'hui, il est reconnu que les cellules musculaires lisses des artères pulmonaires (CMLAP) sont des acteurs clés dans les changements histopathologiques de l'HTAP. Comme dans les cellules cancéreuses, les CMLAP présentent un phénotype pro-prolifératif et anti-apoptotique, soutenu par un important changement métabolique connu sous le nom d'effet Warburg. Les Aurora kinases sont une famille de sérine/thréonine kinase composée d'Aurora A (AURKA), Aurora B (AURKB) et Aurora C (AURKC). Toutes sont fortement impliquées dans la prolifération cellulaire, l'apoptose et le métabolisme en contrôlant l'activation du cycle cellulaire. Des recherches antérieures ont montré qu'AURKB est surexprimée dans divers cancers humains et que son inhibition réprime la progression tumorale à la fois in vivo et in vitro, suggérant qu'elle pourrait être une nouvelle cible thérapeutique dans l'HTAP. Nous avons donc émis l'hypothèse que AURKB est régulée à la hausse en HTAP et contribue à la prolifération et à la survie des CMLAP, dont l'inhibition pourrait inverser le phénotype de l'HTAP et le remodelage des artères pulmonaires (AP). Par une approche multidisciplinaire, nous avons tout d'abord démontré dans cette étude qu'AURKB est surexprimée en HTAP dans les CMLAP isolées de patients atteints par la maladie ainsi que dans les modèles animaux mimant la pathologie; monocrotaline (MCT) et sugen-hypoxie (Sg-Hx). Il a également été démontré que la surexpression d'AURKB était dépendante de FOXM1 dans ces mêmes cellules comparées aux contrôles. In vitro, l'inhibition pharmacologie de AURKB via l'utilisation du Barasertib (AZD1152-HQPA) a montré une diminution significative de la prolifération (incorporation d'EdU, marquage Ki67) et de la survie cellulaire des CMLAP-HTAP (test Annexin V). Parallèlement, des protéines impliquées dans la survie et la prolifération cellulaire (Survivin, PLK1) voient leur expression diminuée à la suite de l'inhibition de AURKB. À l'inverse, des protéines impliquées dans l'arrêt du cycle cellulaire et l'apoptose (P21, P27, P53) voient leur expression augmentée suite au traitement des cellules avec le Barasertib. Tel que suspecté, l'inhibition d'AURKB dans les CMLAP-HTAP est associée à une diminution dose-dépendante de l'expression de la forme phosphorylée de l'histone H3 (pH3). En collaboration avec le Docteur David Marsolais et son étudiant Olivier Courtemanche, il nous a été possible de réaliser de la cytométrie en flux. Cette analyse a permis d'observer que le Barasertib engendre un arrêt du cycle cellulaire, les cellules étant bloquées en phase G2/M. Nous avons également pu constater que le Barasertib provoque de la polyploïdie, un effet secondaire déjà observé en cancérologie. Enfin, un premier test in vivo a été réalisé sur des rats mâles ayant une HTAP induite par la MCT afin de déterminer si l'inhibition pharmacologique de AURKB améliore ou non les paramètres hémodynamiques et le remodelage des AP. Après deux semaines de traitement et afin de s'assurer de l'efficacité de celui-ci l'expression de pH3 a été évaluée par immunobuvardage de type western. Ainsi, après sacrifice et extraction des protéines présentent au niveau des poumons des rongeurs, nous avons pu observer que l'inhibition de AURKB via le Barasertib avait bel et bien fonctionné, l'expression de pH3 étant diminuée chez le groupe de rats traités comparativement aux véhicules. Finalement, ce premier protocole à petite échelle nous a permis de constater une amélioration de certains paramètres hémodynamiques chez les rats ayant reçu la thérapie, les résultats ayant été obtenus par échocardiographie. L'utilisation du Barasertib in vivo est donc très prometteuse, mais des protocoles à plus grandes échelles doivent être réalisés afin de confirmer le potentiel thérapeutique de l'inhibition de AURKB en HTAP. / Pulmonary arterial hypertension (PAH) is a vascular disease characterized by remodeling of the distal pulmonary arteries (DPA). This leads to increased blood pressure and resistance in the pulmonary arteries resulting in right heart failure and death. Today, it is recognized that pulmonary artery smooth muscle cells (PASMC) are key players in the histopathological changes of PAH. As in cancer cells, PASMCs exhibit a pro-proliferative and anti-apoptotic phenotype, supported by an important metabolic change known as the Warburg effect. Aurora kinases are a family of serine/threonine kinase composed of Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC). All are strongly involved in cell proliferation, apoptosis, and metabolism by controlling cell cycle activation. Previous research has shown that AURKB is overexpressed in various human cancers and its inhibition repressed tumor progression both in vivo and in vitro, suggesting that it may be a novel therapeutic target in PAH. We therefore hypothesized that AURKB is upregulated in PAH and contributes to the proliferation and survival of PASMCs-HTAP. The inhibition of AURKB would then reverse PAH phenotype and pulmonary artery (PA) remodeling. Using a multidisciplinary approach, we first demonstrated that AURKB is increased in PASMCs isolated from patients with PAH as well as in animal models mimicking the pathology; monocrotaline (MCT) and sugen-hypoxia (Sg-Hx). AURKB overexpression was also shown to be FOXM1 dependent in these cells compared to controls. In vitro, pharmacological inhibition of AURKB via the use of Barasertib (AZD1152-HQPA) showed a significant decrease in PAH-PASMCs proliferation (EdU incorporation, Ki67 labeling) and survival (Annexin V assay). At the same time, proteins involved in cell survival and proliferation (Survin, PLK1) were decreased following AURKB inhibition. On the other hand, proteins involved in cell cycle arrest and apoptosis (P21, P27, P53) were increased following treatment of cells with Barasertib. As suspected, AURKB inhibition in PAH-PASMCs is associated with a dose-dependent decrease in the expression of the phosphorylated form of H3 (pH3). In collaboration with Dr. David Marsolais and his student Olivier Courtemanche, it was possible to perform flow cytometry. This analysis allowed us to observe that Barasertib causes the cell cycle arrest, the cells being blocked in G2/M phase. We were also able to confirm that Barasertib causes polyploidy, a side effect already observed in cancerology. Finally, a first in vivo test was performed on male MCT rats to determine whether pharmacological inhibition of AURKB improves hemodynamic parameters and PA remodeling. After 2 weeks of treatment and to ensure its efficacy, the expression of pH3 was evaluated by western blot (WB). Thus, after sacrifice and extraction of proteins present in the lungs of rodents, we were able to observe that the inhibition of AURKB via Barasertib had indeed worked, the expression of pH3 being decreased in the treated rats compared to vehicles. Finally, this first small-scale protocol allowed us to observe an improvement in all hemodynamic parameters in rats that received the therapy, the results having been obtained by echocardiography. The use of Barasertib in vivo is therefore very promising, but larger-scale protocols must be performed to confirm the therapeutic potential of AURKB inhibition in PAH.

Identiferoai:union.ndltd.org:LAVAL/oai:https://corpus.ulaval.ca:20.500.11794/102146
Date18 October 2022
CreatorsSauvaget, Mélanie
ContributorsBonnet, Sébastien, Boucherat, Olivier
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xvii, 78 pages), application/pdf

Page generated in 0.0159 seconds