Return to search

Evaluation of the utility of probiotics for the prevention of infections in a model of the skin

Probiotics have been defined as “live microorganisms which when administered in adequate amounts confer a health benefit on the host”. The beneficial effects of probiotics in the gut are well described and roles including immunomodulation and colonisation resistance have been documented. Recent reports suggest that topical use of probiotic bacteria may be an effective strategy to promote skin health or inhibit disease. Therefore, in this thesis the potential of probiotics to protect skin from pathogenic bacteria was assessed using primary keratinocytes as a model system, and the skin pathogen, Staphylococcus aureus. The ability of three probiotics, L. reuteri ATCC 55730, L. rhamnosus AC413 and L. salivarius UCC118 to inhibit the growth of S. aureus was tested using well-diffusion assays and spot on the lawn assays. All three probiotics inhibited the growth of S. aureus in well-diffusion assays, though this property was dependent on growth medium. Inhibition of S. aureus growth was principally via the production of organic acids rather than bacteriocin production. Next, to determine whether probiotics could protect keratinocytes, confluent normal human epidermal keratinocytes (NHEK) were infected with S. aureus (106 CFU/ml) in the presence or absence of the probiotic (108 CFU/ml). NHEK viability was measured using trypan blue exclusion assays. L. reuteri had a significant protective effect on NHEK when applied 1h prior to (P=0.0003), or simultaneously with S. aureus (P=0.002). L. reuteri did not however protect NHEK when applied 1h after S. aureus addition. There was no change in the number of viable S. aureus in cell culture assays. To determine whether the protective effect was due to the inhibition of adhesion, NHEK were either pre-exposed to the probiotic for 1h, simultaneously exposed to the probiotic and S. aureus for 1h, or exposed to the probiotic 30 minutes after S. aureus addition for 1h. Pre-exposure of NHEK to L. reuteri (exclusion) and simultaneous exposure to L. reuteri and S. aureus (competition) resulted in significantly less staphylococci adhering to NHEK (P=0.03 and P=0.008 respectively). However when L. reuteri was added after S. aureus (displacement), the number of adherent staphylococci was not reduced. The necessity of S. aureus adherence for the inactivation of NHEK was demonstrated using a α5β1 integrin blocking antibody. Finally, to compare the innate response of NHEK to probiotics with S. capitis and S. aureus, TLR-2, antimicrobial peptide (AMP) expression and IL-8 production were measured. TLR-2 protein (but not mRNA) expression was reduced in the presence of S. aureus (P=0.018). NHEK pre-exposed to S. capitis prior to S. aureus infection however, exhibited elevated TLR-2 protein and mRNA expression (P<0.0001 and P=0.009 respectively). NHEK pre-exposed to L. reuteri prior to S. aureus had no significant change in TLR-2 expression compared to untreated controls. ELISAs demonstrated that IL-8 production was significantly increased in NHEK pre-exposed to L. reuteri prior to S. aureus infection (P=0.0001). In conclusion, L. reuteri protected NHEK from the toxic effects of S. aureus at least partly through competitive exclusion of binding sites on NHEK. Finally, NHEK innate responses to probiotic bacteria were akin to those to the skin commensal, S. capitis. L. reuteri induced expression of a neutrophil chemoattractant, suggesting it could be of importance in priming the innate immune response against S. aureus infections. Taken together, these results suggest that probiotic bacteria could be used prophylactically within skin creams and soaps to prevent S. aureus colonisation and infection in skin.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:606906
Date January 2012
CreatorsPrince, Tessa
ContributorsO'Neill, Catherine; Mcbain, Andrew
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/evaluation-of-the-utility-of-probiotics-for-the-prevention-of-infections-in-a-model-of-the-skin(8eecb539-d661-4ce9-900d-8c75064e29fa).html

Page generated in 0.0017 seconds