The present thesis consists of four research papers. Each article deals with quan- tifications of certain properties of Banach spaces. The first paper is devoted to the Grothendieck property. The main result is that the space ∞ enjoys its quan- titative version. The second paper investigates quantifications of the Banach- Saks and the weak Banach-Saks property. The relationship of compact, weakly compact, Banach-Saks, and weak Banach-Saks sets is quantified, as well as some characterizatons of weak Banach-Saks sets. In the third article we discuss possible quantifications of Pelczy'nski's property (V), their characterizations and relations to quantitative versions of other properties of Banach spaces. The last paper is a continuation of the third one. We prove that C∗ -algebras have a quantita- tive version of the property (V), which generalizes one of the results obtained in the previous paper. Moreover, we establish a relationship between quantita- tive versions of the property (V) and the Grothendieck property in dual Banach spaces. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:352071 |
Date | January 2016 |
Creators | Krulišová, Hana |
Contributors | Kalenda, Ondřej, Raja Baño, Matias, Hamhalter, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds