Return to search

Energy dispersed ion signatures at auroral and subauroral latitudes

During magnetically disturbed periods, the spatially and temporally structured electron precipitation in the auroral zone creates a significant population of thermal secondary ions. Acceleration mechanisms exist that are capable of energizing the thermal population to suprathermal energies (1 eV to 1 keV). Suprathermal ions escape into the magnetosphere and undergo "bounce" motion along magnetic field lines. These ions are bound to the magnetic flux tubes, which undergo ExB convective drift within the magnetosphere. Magnetospheric convection transports flux tubes of bouncing suprathermal ions through the auroral zone and the subauroral polarization stream (SAPS) regions. Precipitating suprathermal ions enhance ionospheric plasma density structure and constitute a possible source for the enhanced echo occurrence observed by ground-based radars in the SAPS region. Satellite energy spectrometer data often show multiple bands of suprathermal particles with enhanced number and energy flux, and with an energy increase with increasing latitude. The present work examines the hypothesis that these signatures are the result of thermal secondary ions that have been accelerated out of the auroral ionosphere over the short time scales characterizing bursts of intense auroral electron precipitation. The analysis of three events of energy-dispersed ion signatures was facilitated by three-dimensional ion tracing software developed for this thesis. The short-lived acceleration hypothesis can account for the energy-dispersed ion signatures if there exist inter-hemispheric field aligned potentials of the order of 100 V. If the source of the ions is within the auroral zone, the suprathermal ions observed in the SAPS region are most likely to be O+ ions. The long bounce period of O+ (compared to H+) allows convection to transport O+ auroral ions equatorward through a convection reversal, into the SAPS region during a single half-bounce.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-04032007-171247
Date04 April 2007
CreatorsSchwab, Robert Douglas
ContributorsXiao, Chijin, Sofko, George J., Smolyakov, Andrei I., McWilliams, Kathryn A., Koustov, Alexandre V. (Sasha), Johanson, Robert E., Hussey, Glenn C.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04032007-171247/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds