How do bacteria grow and replicate rapidly? How do viruses and phages adapt to their host environments? Bacteria require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A feature that is conserved across bacterial lineages is the Shine-Dalgarno (SD) sequence at the mRNA 5’ UTR, which pairs with the anti-SD sequence located at the 3’ end of mature 16S rRNA. Nonetheless, much about this interaction remains unclear. Chapter 2 reveals evolutionary differences between Cyanobacteria and chloroplast translation initiation using a new model (DtoStart) that better define optimal SD sequence and an RNA-Seq-based approach that reliably characterize the 3’ end of mature 16S rRNAs. Efficacy of translation elongation depends much on tRNA-mediated codon adaptation. In Escherichia coli, selection favours major codons because they are rapidly decoded by abundantly available cognate tRNAs. Nonetheless, the degree codon bias correlates with tRNA availability is unclear in many bacterial species because tRNA abundance is often inadequately approximated by gene copy numbers. To better understand tRNA-mediated codon bias, Chapter 3 describes an RNA-Seq-based approach to robustly quantify tRNA abundance. Finally, Chapter 4 evaluates the degree optimal translation initiation and elongation signals affect ribosome dynamics. The emergence of COVID-19 pandemic poses a serious global health emergency. To establish infection during cell entry, the coronavirus Spike protein binds to the host ACE2 receptor, and a high binding potential between these two players is key to infectivity. While SARS-CoV-2 transmits efficiently in humans, it is less clear which other mammals are at risk of being infected. Chapter 5 investigates the host range of SARS-CoV-2 through comparative sequence analyses at the ACE2 receptors and the Spike proteins. As obligate parasites, coronaviruses regularly infect host tissues that express antiviral proteins (AVPs) in abundance and must evade or adapt to the host cellular environments post-entry. Two AVPs that shape viral genomes are ZAP that binds to CpG dinucleotides to facilitate viral transcript degradation, and APOBEC3 which deaminates C into U leading to dysfunctional transcripts. Chapter 6 shows that coronavirus genomes are CpG deficient to evade ZAP and are subjected to constant C to U deamination by APOBEC3. This thesis examines two key concepts of microbial genome evolution: 1) coevolution between gene features and the translation machinery in bacteria, and 2) adaptation of viruses to the hosts they infect. Chapters 2, 3, and 4 are aimed at improving our understanding in bacterial gene expression in the applications of transgenic biosynthesis and phage therapy. Chapters 5 and 6 are aimed at improving our understanding in the origin and evolution of SARS-CoV-2 and our ability to control the spread of infection.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42422 |
Date | 19 July 2021 |
Creators | Wei, Yulong |
Contributors | Xia, Xuhua |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0019 seconds