Return to search

Wide- and zero-bandgap nanodevices for extreme biosensing applications

Contemporary diagnostics rely on expensive, time-consuming, and optically-limited mechanisms that prevent at-home point-of-care molecular diagnostics with the accuracy of laboratory tools and the convenience of affordability. In this Thesis, biosensing was explored with commercial two-dimensional (2D) materials which have been investigated extensively over the last two decades yielding a variety of sensor metrics for detecting biomolecules. 2D materials have intrinsic properties that depend on the quality of material and substrate surface being employed. Here, graphene/SiO2 and monolayer hexagonal boron nitride (hBN) capping layer on graphene/SiO2 field-effect transistors (FETs) were used. Until recently, monolayer hBN has not been commercially available at the wafer-scale and has been observed in the literature to augment the properties of graphene-based devices and better control of processing repeatability. The work in this Thesis combines biochemistry with the wafer-scale production and surface-dependent properties of graphene and monolayer hBN/graphene via a FET fabrication process circumventing the use of photoresist. This was done to avoid photoresist resin that may contaminate the transducer surface and contribute to repeatability issues when studying biochemistry with 2D materials. Briefly, surface engineering of graphene/SiO2 and hBN/graphene/SiO2 was done, and the transfer characteristics were measured as a function of either the concentration of protons, genes, or proteins. Compared to bare 2D materials, the pH sensitivity of the shift in Dirac voltage was enhanced to -99 mV/pH when using 8.6 nm of Al2O3 on hBN/graphene/SiO2 FET. Graphene devices were then engineered for sensing SARS-CoV-2 genome with a signal-to-noise ratio of 3 at 100 aM and a linearized sensitivity of +22 mV/molar decade of SARS-CoV-2 ribonucleic acid and a dynamic range of four orders of magnitude. This was done by conjugating single-stranded deoxyribonucleic acid to sub-percolation threshold gold nanofilms deposited directly on the graphene sensing mesa. Finally, the 2D devices were studied for detecting SARS-CoV-2 spike protein after being functionalized with rabbit immunoglobulin G (IgG) monoclonal antibody (mAb). Additionally, preliminary work was done regarding the partial reduction and fragmentation of anti-SARS-CoV-2 spike protein human mAb IgG in an approach to leverage gold-thiol chemistry for covalently bonding the IgG to the 2D sensing mesa. In summary, the utilization of wide- and zero-bandgap nanomaterials may have profound implications in augmenting molecular diagnosis and treatment of disease through economically decentralizing biosensing. / 2024-01-20T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/45494
Date20 January 2023
CreatorsFuhr, Nicholas Edward
ContributorsBishop, David J.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0172 seconds