Return to search

Design and thermal analysis for a novel EMCCD camera payload in a 1U CubeSat form factor

Nüvü Camēras, a Canadian company that designs a range of CCD and EMCCD cameras and controllers, recently began development on a miniaturized EMCCD controller for a CubeSat form factor. The detector for this payload requires near-cryogenic temperatures, approximately 188K, for performance operation. A temperature requirement of that magnitude for a CubeSat form factor is challenging given the low thermal mass, volume, surface area, and power availability for heat storage, dissipation and control systems that would typically be available for larger form factor spacecraft. The goal of this project is to design and per- form thermal analysis for the Nüvü Camēras CubeSat EMCCD Controller that allows for cold-biased active temperature control of both the controller electronics and detector. The EMCCD controller had an operational temperature range of −35◦C to +60◦C while the detector had a performance range of −110◦C to −85◦C with a desire to maintain a resolu- tion of ±0.25◦C. To meet these requirements, a system was designed within 3D modeling software Autodesk Inventor and imported into Thermal Desktop for thermal analysis and iteration. Models were updated based on thermal analysis results, adjusted by hand, and then tested again until a passive cooling and active heating system that met the require- ments was achieved. The final control system was shown to be capable of cooling from 20◦C (293.15K) to −85◦C (188.15K) and beyond given a Sun Synchronous orbit at 600km with attitude control and operational requirements. It was also shown to be capable of heating up, using resistive heaters on key components, beyond the thermal inertia of the system and environment, indicating viable control on orbit. In the future a PID control method can be implemented, and its use is being investigated by Nüvü Camēras for achieving the desired resolution of ±0.25◦C in the future. / Master of Science / Nüvü Camēras, a Canadian company that designs a range of Charge-Coupled Device (CCD) and Electon Multiplication Charge-Coupled Device (EMCCD) cameras and controllers, re- cently began development on a miniaturized EMCCD controller for a CubeSat form factor.
CubeSats are a standard for nanosatellites, a classification of spacecraft with dimensions on the order of centimeters instead of meters. The Nüvü Camēras CubeSat EMCCD controller will operate a detector that enables the collection of extremely low light images, or even the counting of individual photons, that other CCD detectors are not capable of in such a form factor. This kind of quality comes with operating requirements such as a very low tempera- ture for the detector, which can be challenging to achieve in a CubeSat. The challenges are the low thermal mass for heat storage, low volume and surface area for fitting components and dissipating heat via radiation, and low power availability to run active systems such as cryocoolers. The goal of this project was to develop a temperature management system that tackles these challenges and allows the operation of the Nüvü Camēras CubeSat EMCCD controller on a variety of Low Earth Orbit (LEO) missions. To achieve this, a passive cool- ing system was designed to be cooled below the necessary temperature such that it can be effectively warmed back up as a method of active control with resistive heaters. This system was designed in a Computer Aided Design (CAD) program called Autodesk Inventor and analyzed in a thermal analysis program called Thermal Desktop. After a final analysis of the full setup, it was determined that the system would allow for thermal management at LEO for the Nüvü Camēras CubeSat EMCCD controller and detector.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/119499
Date24 June 2024
CreatorsAngle, Nicholas Blake
ContributorsAerospace and Ocean Engineering, Black, Jonathan T., Harding, Leon K., Schroeder, Kevin Kent
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0023 seconds