Return to search

A deep learning model for scene recognition

Scene recognition is a hot research topic in the field of image recognition. It is necessary that we focus on the research on scene recognition, because it is helpful to the scene understanding topic, and can provide important contextual information for object recognition. The traditional approaches for scene recognition still have a lot of shortcomings. In these years, the deep learning method, which uses convolutional neural network, has got state-of-the-art results in this area. This thesis constructs a model based on multi-layer feature extraction of CNN and transfer learning for scene recognition tasks. Because scene images often contain multiple objects, there may be more useful local semantic information in the convolutional layers of the network, which may be lost in the full connected layers. Therefore, this paper improved the traditional architecture of CNN, adopted the existing improvement which enhanced the convolution layer information, and extracted it using Fisher Vector. Then this thesis introduced the idea of transfer learning, and tried to introduce the knowledge of two different fields, which are scene and object. We combined the output of these two networks to achieve better results. Finally, this thesis implemented the method using Python and PyTorch. This thesis applied the method to two famous scene datasets. the UIUC-Sports and Scene-15 datasets. Compared with traditional CNN AlexNet architecture, we improve the result from 81% to 93% in UIUC-Sports, and from 79% to 91% in Scene- 15. It shows that our method has good performance on scene recognition tasks.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-36491
Date January 2019
CreatorsMeng, Zhaoxin
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds