Return to search

Wear, Friction and High Shear Strain Deformation of Metallic Glasses

In this work, wear and scratch behavior of four different bulk metallic glasses (BMGs) namely Zr41.2Cu12.5Ni10Ti13.8Be22.5 (LM 1), Zr57Cu15.4Ni12.6Al10Nb5 (LM 106), Ni60Pd20P17B3 (Ni-BMG), and Pt57.5Cu14.7Ni5.3P22.5 (Pt-BMG) were compared. Shear band formation on the edges of the scratch groove with spallation was found to be the primary failure mechanism in progressive scratch tests. The wear behavior and the scratch response of model binary Ni-P metallic glasses was systematically studied as a function of composition, with amorphous alloy formation over the narrow range of 10 at% to 20 at% phosphorus. Pulsed current electrodeposition was used to obtain these binary amorphous alloys, which offers a facile and versatile alternative to conventional melt quenching route. The electrodeposited metallic glasses (EMGs) showed hardness values in the range of 6.6-7.4 GPa, modulus in the range of 155-163 GPa, and friction coefficient around 0.50. Among the studied alloys, electrodeposited Ni80P20 showed the lowest wear rate. The wear mechanism was determined to be extensive plastic deformation along with mild ploughing, micro tears, and formation of discontinuous lubricious oxide patches. The effect of phosphorus content on the structure, mechanical properties, and the tribological response was systematically investigated for biocompatible Co-P metallic glasses. With increase in phosphorus content, there was an increase in hardness, hardness/modulus, wear resistance, and scratch resistance following the trend: Co80P20 > Co90P10 > Pure Co. The Co-P electrodeposited amorphous alloys showed enhanced wear resistance that was two orders of magnitude better than SS 316 and Ti-based alloys in simulated physiological environment. The wear mechanisms were determined to be a combination of abrasive and surface fatigue wear in both dry and physiological environments. Decreased platelet adhesion and more extracellular matrix deposition indicated that Co80P20 electrodeposited alloy had excellent blood compatibility and pre-osteoblast adhesion response. These results suggest the potential use of Co-P metallic glasses as superior bio implant materials with better durability compared to the state-of-the-art.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1944219
Date05 1900
CreatorsPole, Mayur
ContributorsMukherjee, Sundeep, Dahotre, Narendra, Scharf, Thomas W, Aouadi, Samir, Narsazadani, Seifollah
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Pole, Mayur, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0078 seconds