Return to search

Mining association rules with weighted items.

by Cai, Chun Hing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 109-114). / Abstract also in Chinese. / Acknowledgments --- p.ii / Abstract --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Main Categories in Data Mining --- p.1 / Chapter 1.2 --- Motivation --- p.3 / Chapter 1.3 --- Problem Definition --- p.4 / Chapter 1.4 --- Experimental Setup --- p.5 / Chapter 1.5 --- Outline of the thesis --- p.6 / Chapter 2 --- Literature Survey on Data Mining --- p.8 / Chapter 2.1 --- Statistical Approach --- p.8 / Chapter 2.1.1 --- Statistical Modeling --- p.9 / Chapter 2.1.2 --- Hypothesis testing --- p.10 / Chapter 2.1.3 --- Robustness and Outliers --- p.11 / Chapter 2.1.4 --- Sampling --- p.12 / Chapter 2.1.5 --- Correlation --- p.15 / Chapter 2.1.6 --- Quality Control --- p.16 / Chapter 2.2 --- Artificial Intelligence Approach --- p.18 / Chapter 2.2.1 --- Bayesian Network --- p.19 / Chapter 2.2.2 --- Decision Tree Approach --- p.20 / Chapter 2.2.3 --- Rough Set Approach --- p.21 / Chapter 2.3 --- Database-oriented Approach --- p.23 / Chapter 2.3.1 --- Characteristic and Classification Rules --- p.23 / Chapter 2.3.2 --- Association Rules --- p.24 / Chapter 3 --- Background --- p.27 / Chapter 3.1 --- Iterative Procedure: Apriori Gen --- p.27 / Chapter 3.1.1 --- Binary association rules --- p.27 / Chapter 3.1.2 --- Apriori Gen --- p.29 / Chapter 3.1.3 --- Closure Properties --- p.30 / Chapter 3.2 --- Introduction of Weights --- p.31 / Chapter 3.2.1 --- Motivation --- p.31 / Chapter 3.3 --- Summary --- p.32 / Chapter 4 --- Mining weighted binary association rules --- p.33 / Chapter 4.1 --- Introduction of binary weighted association rules --- p.33 / Chapter 4.2 --- Weighted Binary Association Rules --- p.34 / Chapter 4.2.1 --- Introduction --- p.34 / Chapter 4.2.2 --- Motivation behind weights and counts --- p.36 / Chapter 4.2.3 --- K-support bounds --- p.37 / Chapter 4.2.4 --- Algorithm for Mining Weighted Association Rules --- p.38 / Chapter 4.3 --- Mining Normalized Weighted association rules --- p.43 / Chapter 4.3.1 --- Another approach for normalized weighted case --- p.45 / Chapter 4.3.2 --- Algorithm for Mining Normalized Weighted Association Rules --- p.46 / Chapter 4.4 --- Performance Study --- p.49 / Chapter 4.4.1 --- Performance Evaluation on the Synthetic Database --- p.49 / Chapter 4.4.2 --- Performance Evaluation on the Real Database --- p.58 / Chapter 4.5 --- Discussion --- p.65 / Chapter 4.6 --- Summary --- p.66 / Chapter 5 --- Mining Fuzzy Weighted Association Rules --- p.67 / Chapter 5.1 --- Introduction to the Fuzzy Rules --- p.67 / Chapter 5.2 --- Weighted Fuzzy Association Rules --- p.69 / Chapter 5.2.1 --- Problem Definition --- p.69 / Chapter 5.2.2 --- Introduction of Weights --- p.71 / Chapter 5.2.3 --- K-bound --- p.73 / Chapter 5.2.4 --- Algorithm for Mining Fuzzy Association Rules for Weighted Items --- p.74 / Chapter 5.3 --- Performance Evaluation --- p.77 / Chapter 5.3.1 --- Performance of the algorithm --- p.77 / Chapter 5.3.2 --- Comparison of unweighted and weighted case --- p.79 / Chapter 5.4 --- Note on the implementation details --- p.81 / Chapter 5.5 --- Summary --- p.81 / Chapter 6 --- Mining weighted association rules with sampling --- p.83 / Chapter 6.1 --- Introduction --- p.83 / Chapter 6.2 --- Sampling Procedures --- p.84 / Chapter 6.2.1 --- Sampling technique --- p.84 / Chapter 6.2.2 --- Algorithm for Mining Weighted Association Rules with Sampling --- p.86 / Chapter 6.3 --- Performance Study --- p.88 / Chapter 6.4 --- Discussion --- p.91 / Chapter 6.5 --- Summary --- p.91 / Chapter 7 --- Database Maintenance with Quality Control method --- p.92 / Chapter 7.1 --- Introduction --- p.92 / Chapter 7.1.1 --- Motivation of using the quality control method --- p.93 / Chapter 7.2 --- Quality Control Method --- p.94 / Chapter 7.2.1 --- Motivation of using Mil. Std. 105D --- p.95 / Chapter 7.2.2 --- Military Standard 105D Procedure [12] --- p.95 / Chapter 7.3 --- Mapping the Database Maintenance to the Quality Control --- p.96 / Chapter 7.3.1 --- Algorithm for Database Maintenance --- p.98 / Chapter 7.4 --- Performance Evaluation --- p.102 / Chapter 7.5 --- Discussion --- p.104 / Chapter 7.6 --- Summary --- p.105 / Chapter 8 --- Conclusion and Future Work --- p.106 / Chapter 8.1 --- Summary of the Thesis --- p.106 / Chapter 8.2 --- Conclusions --- p.107 / Chapter 8.3 --- Future Work --- p.108 / Bibliography --- p.108 / Appendix --- p.115 / Chapter A --- Generating a random number --- p.115 / Chapter B --- Hypergeometric distribution --- p.116 / Chapter C --- Quality control tables --- p.117 / Chapter D --- Rules extracted from the database --- p.120

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322360
Date January 1998
ContributorsCai, Chun Hing., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiii, 124 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds