Src homology 3 (SH3) domains are one family of the peptide recognition modules (PRMs), which bind peptides rich in proline or positively charged residues in the target proteins, and play important assembly or regulatory functions in dynamic eukaryotic cellular processes, especially in signal transduction and endocytosis. SH3 domains are conserved from yeast to human, and improper SH3 domain mediated protein-protein interaction (PPI) leads to defects in cellular function and may even result in disease states. Since commonly used large-scale PPI mapping strategies employed full-length proteins or random protein fragments as screening probes and did not identify the particular PPIs mediated by the SH3 domains, I employed a combined experimental and computational strategy to address this problem.
I used yeast two-hybrid (Y2H) as my major experimental tool, as well as individual SH3 domains as baits, to map SH3 domain mediated PPI networks, “SH3 domain interactomes”. One of my important contributions has been the improvement for Y2H technology. First, I generated a pair of Y2H host strains that improved the efficiency of high-throughput Y2H screening and validated their usage. These strains were employed in my own research and also were adopted by other researchers in their large-scale PPI network mapping projects. Second, in collaboration with Nicolas Thierry-Mieg, I developed a novel smart-pooling method, Shifted Transversal Design (STD) pooling, and validated its application in large-scale Y2H. STD pooling was proven to be superior among currently available methods for obtaining large-scale PPI maps with higher coverage, high sensitivity and high specificity.
I mapped the SH3 domain interactomes for both budding yeast Saccharomyces cerevisiae and nematode worm Caenorhabditis elegans, which contain 27 and 84 SH3 domains, respectively. Comparison of these two SH3 interactomes revealed that the role of the SH3 domain is conserved at a functional but not a structural level, playing a major role in the assembly of an endocytosis network from yeast to worm. Moreover, the worm SH3 domains are additionally involved in metazoan-specific functions such as neurogenesis and vulval development. These results provide valuable insights for our understanding of two important evolutionary processes from single cellular eukaryotes to animals: the functional expansion of the SH3 domains into new cellular modules, as well as the conservation and evolution of some cellular modules at the molecular level, particularly the endocytosis module.
Identifer | oai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/24387 |
Date | 21 April 2010 |
Creators | Xin, Xiaofeng |
Contributors | Boone, Charles |
Source Sets | University of Toronto |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds