Return to search

Quantitative imaging of multi-component turbulent jets

The Gaseous state of hydrogen at ambient temperature, combined with the fact that hydrogen is highly flammable, results in the requirement of more robust, high pressure storage systems that can meet modern safety standards. To develop these new safety standards and to properly predict the phenomena of hydrogen dispersion, a better understanding of the resulting flow structures and flammable regions from controlled and uncontrolled releases of hydrogen gas must be achieved. In this study the subsonic release of hydrogen was emulated using helium as a substitute working fluid. A sharp-edged orifice round turbulent jet is used to emulate releases in which leak geometry is circular. Effects of buoyancy, crossflow and adjacent surfaces were studied over a wide range of Froude numbers. The velocity fields of turbulent jets were characterized using particle image velocimetry (PIV). The mean and fluctuation velocity components were well quantified to show the effect of buoyancy due to the density difference between helium and the surrounding air. In the range of Froude numbers investigated, increasing effects of buoyancy were seen to be proportional to the reduction of the Fr number. The obtained results will serve as control reference values for further concentration measurement study and for computational fluid dynamics (CFD) validation. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/3918
Date26 April 2012
CreatorsAsh, Arash
ContributorsDjilali, Nedjib, Oshkai, Peter
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsAvailable to the World Wide Web

Page generated in 0.0021 seconds