This investigation examines a novel means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of SUS304 substrate. The titanium (Ti) and platinum (Pt) layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. Scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and highly c-axis-preferring orientation. To fabricate a transducer with a resonant frequency of about 80 Hz, a cantilever length of 1 cm and a vibration area of 1 cm2 are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.3 £gW/cm2 is obtained from the transducers with a load resistance of 6 M£[.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0815111-185932 |
Date | 15 August 2011 |
Creators | Chu, Yu-hsien |
Contributors | Cheng-fu Yang, Ying-chung Chen, Cheng-tang Pan, Chih-ming Wang, Chien-jung Huang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0815111-185932 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0019 seconds