Return to search

Conversational CBR for Improved Patient Information Acquisition

In this thesis we describe our study of two knowledge intensive Conversational Case-Based Reasoning (CCBR) systems and their methods. We look in particular at the way they have solved inferencing and question ranking. Then we continue with a description of our own design for a CCBR system, that will help patients share their experiences of side effects with drugs, with other patients. We describe how we create cases, how our question selection methods work and present an example of how the domain model will look. It is also included a simulation of how a dialogue would be for a patient. The design we have created is a good basis for implementing a knowledge intensive CCBR system. The system should work better than a normal CCBR system, because of the inferencing and question ranking methods, which should lessen the cognitive load on the user and require fewer questions answered, to reach a good solution.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-8803
Date January 2007
CreatorsMarthinsen, Tor Henrik Aasness
PublisherNorges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, Institutt for datateknikk og informasjonsvitenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds