Return to search

Sensor Placement for Damage Localization in Sensor Networks

The objective of this thesis is to formulate and solve the sensor placement problem for damage localization in a sensor network. A Bayesian estimation problem is formulated with the time-of-flight (ToF) measurements. In this model, ToF of lamb waves, which are generated and received by piezoelectric sensors, is the total time for each wave to be transmitted, reflected by the target, and received by the sensor. The ToF of the scattered lamb wave has characteristic information about the target location. By using the measurement model and prior information, the target location is estimated in a centralized sensor network with a Monte Carlo approach. Then we derive the Bayesian Fisher information matrix (B-FIM) and based on that posterior Cramer-Rao lower bound (PCRLB), which sets a limit on the mean squared error (MSE) of any Bayesian estimator. In addition, we develop an optimal sensor placement approach to achieve more accurate damage localization, which is based on minimizing the PCRLB. Simulation results show that the optimal sensor placement solutions lead to much lower estimation errors than some sub-optimal sensor placement solutions.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-7105
Date01 January 2019
CreatorsFirouzi, Fereshteh
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0021 seconds