Image filtering methods are designed to enhance noisy images captured in situations that are problematic for the camera sensor. Such noisy images originate from unfavourable illumination conditions, camera motion, or the desire to use only a low dose of ionising radiation in medical imaging. Therefore, in this thesis work I have investigated the theory of partial differential equations (PDE) to design filtering methods that attempt to remove noise from images. This is achieved by modeling and deriving energy functionals which in turn are minimized to attain a state of minimum energy. This state is obtained by solving the so called Euler-Lagrange equation. An important theoretical contribution of this work is that conditions are put forward determining when a PDE has a corresponding energy functional. This is in particular described in the case of the structure tensor, a commonly used tensor in computer vision.A primary component of this thesis work is to model adaptive image filtering such that any modification of the image is structure preserving, but yet is noise suppressing. In color image filtering this is a particular challenge since artifacts may be introduced at color discontinuities. For this purpose a non-Euclidian color opponent transformation has been analysed and used to separate the standard RGB color space into uncorrelated components.A common approach to achieve adaptive image filtering is to select an edge stopping function from a set of functions that have proven to work well in the past. The purpose of the edge stopping function is to inhibit smoothing of image features that are desired to be retained, such as lines, edges or other application dependent characteristics. Thus, a step from ad-hoc filtering based on experience towards an application-driven filtering is taken, such that only desired image features are processed. This improves what is characterised as visually relevant features, a topic which this thesis covers, in particular for medical imaging.The notion of what are relevant features is a subjective measure may be different from a layman's opinion compared to a professional's. Therefore, we advocate that any image filtering method should yield an improvement not only in numerical measures but also a visual improvement should be experienced by the respective end-user / NACIP, VIDI, GARNICS
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-92788 |
Date | January 2013 |
Creators | Åström, Freddie |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1594 |
Page generated in 0.0018 seconds