Recent technological advances have allowed silicon (Si) semiconductor technology to
approach the theoretical limits of the Si material; however, power device requirements for
many applications are at a stage that the present Si-based power devices cannot handle.
The requirements include higher blocking voltages, switching frequencies, efficiency, and
reliability. Material technologies superior to Si are needed for future power device
developments. Silicon Carbide (SiC) based semiconductor devices offer one such
alternative. SiC based power devices exhibit superior properties such as very low
switching losses, fast switching behavior, improved reliability and high temperature
operation capabilities. Power factor correction stage of power supplies is identified as an
area where application of these devices would prove advantageous. In this thesis a high
performance, high efficiency, SiC based power factor correction stage is discussed. The
proposed topology takes advantage of the superior properties of SiC semiconductor based
devices and the reduced number of devices that the dual boost power factor correction
topology requires to achieve high efficiency, small size and better performance at high
temperature. In addition to this analysis of SiC based power devices is carried out to study
their characteristics and performance.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/2573 |
Date | 01 November 2005 |
Creators | Durrani, Yamin Qaisar |
Contributors | Prasad, Enjeti |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 1687749 bytes, electronic, application/pdf, born digital |
Page generated in 0.0022 seconds