Return to search

Chemische Aspekte elektronischer und phononischer Feinabstimmung in thermoelektrischen Materialien

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung neuartiger thermoelektrischer (TE) Materialien, unter Berücksichtigung einer effizienten Präparation in Verbindung mit sorgfältiger chemischer Charakterisierung und physikalischer Messung. Als Grundvoraussetzung für eine TE aktive Verbindung muss diese ein Halbleiter sein, dessen Ladungsträgerkonzentration durch geeignete Substitution justiert werden kann. Weiterhin sollte eine starke Steigung der elektronischen Zustandsdichte am Fermi-Niveau vorhanden sein, um hohe Seebeck-Koeffizienten zu erhalten. Schwere Elemente in einer möglichst komplizierten Kristallstruktur sollten für eine relativ geringe thermische Leitfähigkeit von Vorteil sein. RuIn3 und seine Substitutionsvarianten erfüllen diese Voraussetzungen. Eine Fest-Flüssig-Reaktion mit anschließendem Spark-Plasma-Sintern (SPS) zur Präparation polykristalliner Materialien lieferte phasenreine Produkte. Binäres RuIn3 ist ein Halbleiter mit einer Bandlücke von 0,45 eV, welcher in Abhängigkeit von der Temperatur große negative und positive Seebeck-Koeffizienten zeigt. Die thermische Leitfähigkeit ist mit κmin = 3,8(8) W K-1 m-1 relativ gering.

Eine genaue Einstellung der Ladungsträgerkonzentration kann durch Substitution von In mit Sn oder Zn erfolgen, wodurch ausschließlich negative (Sn) oder positive (Zn) Seebeck-Koeffizienten vorliegen. Gleichzeitig wird die thermische Leitfähigkeit um ca. 50 % im Vergleich zu binärem RuIn3 gesenkt. Die Substitution in RuIn3-xSnx und RuIn3-xZnx (x = 0,10) geht mit einem Halbleiter-Metall-Übergang einher, welcher durch Messungen des elektrischen Widerstands verifiziert wurde. Analysen mittels wellenlängendispersiver Röntgenspektroskopie zeigen eine gute Übereinstimmung der nominellen und experimentellen Zusammensetzung für die Sn-Substitution und einen vergleichsweise geringen Zn-Gehalt. RuO2-Verunreinigungen in kommerziellem Ru-Pulver sind die Ursache für kleine Nebenphasenanteile von In2O3 in RuIn3-xSnx und ZnO in RuIn3-xZnx. Die dadurch ablaufenden Reduktionen und die Redoxpotentiale der Elemente und Verbindungen können mit den Gitterparametern der Substitutionsvarianten und dem Homogenitätsbereich der Stammverbindung RuIn3 in Einklang gebracht werden.

Zur Eliminierung der RuO2-Verunreinigungen wurde eine Wasserstoff-Reduktionsapparatur entwickelt. Damit konnten die Sauerstoffverunreinigungen im Ru-Pulver vollständig entfernt werden. Mit diesem gereinigten Ausgangsmaterial wurden die mit Zn substituierten Spezies erneut synthetisiert. Es zeigt sich eine sehr gute Übereinstimmung zwischen der nominellen und experimentellen Zusammensetzung für die Zn-Substitution unter Nutzung des reduzierten Ru-Pulvers. Die Substitutionen der In-Position mit Zn führten zu maximalen TE Gütewerten von ZTmax = 0,76(19) in RuIn2;975Zn0;025.

Neben Optimierungen der Ladungsträgerkonzentration spielen Veränderungen des Gefüges für die Eigenschaften eines TE Materials eine zentrale Rolle. Zur Ermittlung der Auswirkungen des Gefüges auf die TE Eigenschaften wurden große Einkristalle von RuGa3 (isostrukturell zu RuIn3) durch ein modifiziertes Bridgman-Verfahren gezüchtet und mit polykristallinem Material verglichen, welches aus diesem Einkristall hergestellt wurde. Gitterparameter und chemische Zusammensetzung der untersuchten RuGa3-Proben weisen keinerlei Variation auf. Die TE Eigenschaften zeigen im Hochtemperaturbereich (T = 300 K) keine signifikanten Unterschiede. In der Messung des Seebeck-Koeffizienten des RuGa3-Einkristalls lässt sich bei tiefen Temperaturen ein scharfes Minimum beobachten, welches in der polykristallinen Probe nicht auftritt.

Analog dazu ist die thermische Leitfähigkeit des Einkristalls durch ein deutliches Maximum gekennzeichnet, welches in der polykristallinen Probe nahezu vollständig zusammenfällt. Die zusätzlichen Korngrenzen im Gefüge des polykristallinen Materials wirken als Streuzentren für Phononen, welche im entsprechenden RuGa3-Einkristall nicht vorhanden sind. Die intrinsischen Eigenschaften von RuGa3 mit hoher Wärmeleitfähigkeit in Verbindung mit niedrigem Seebeck-Koeffizienten bei tiefen Temperaturen könnten mit dem Phonon-drag-Effekt erklärt werden.

Darauffolgend wurde Ruthenium durch Eisen vollständig ersetzt und der momentan viel untersuchte Halbleiter FeGa3 (isostrukturell zu RuIn3) studiert. Die Präparation polykristalliner Proben wurde analog zu RuIn3 und RuGa3 mit einer Fest-Flüssig-Reaktion und anschließender SPS-Behandlung durchgeführt. Aufgrund fehlender Untersuchungen zu einem geeigneten Substitutionselement wurden die Substitutionsvarianten FeGa3-xEx (E = Al, In, Zn, Ge; x = 0,50) präpariert. Die festen Lösungen FeGa3-xEx mit E = Al, In, Zn zeigen keine Verbesserung der TE Aktivität. Für FeGa3-xGex konnten aus chemischer und physikalischer Sicht die besten Ergebnisse erzielt werden. Systematisch sinkende c-Gitterparameter bei steigender Substitutionskonzentration gehen mit einer sehr guten Übereinstimmung von nomineller und experimenteller Zusammensetzung einher. Mit steigendem Ge-Gehalt wird der elektrische Widerstand und die thermische Leitfähigkeit gesenkt. Für die feste Lösung FeGa2;80Ge0;20 wird eine maximale TE Aktivität ZTmax = 0,21(5) erreicht. Für Untersuchungen zu Gefügeeinflüssen in FeGa3 wurden Einkristalle mit polykristallinem Material verglichen. Dabei weisen die Gitterparameter und die chemische Zusammensetzung der Einkristalle und des polykristallinen Materials im Bereich des experimentellen Fehlers keine Unterschiede auf. Die TE Eigenschaften bei hohen Temperaturen (T = 400 K) zeigen keine signifikanten Unterschiede zwischen poly- und einkristallinen Proben.

Im Gegensatz dazu stehen Messungen des Seebeck-Koeffizienten und der thermischen Leitfähigkeit bei tiefen Temperaturen. Bei Temperaturen unter 20 K sind die Wärmeleitfähigkeiten der Einkristalle durch starke Maxima geprägt (κ[001](Czochralski) < κ[100](Czochralski) < κ(Ga-Fluss)). Im polykristallinen Material mit der höchsten Defekt-Konzentration (Korngrenzen) ist dieses Signal durch viele zusätzliche Streuzentren für Phononen fast vollständig unterdrückt. Der Seebeck-Koeffizient der Einkristalle und des polykristallinen Materials ist im gleichen Temperaturbereich und in gleicher Reihenfolge ebenfalls durch starke Signale gekennzeichnet. Für die ungewöhnlich niedrigen Seebeck-Koeffizienten wurden magnetische oder strukturelle Phasenübergänge durch Messungen der magnetischen Suszeptibilität und der Wärmekapazität ausgeschlossen. Theoretische Berechnungen der elektronischen Eigenschaften auf Basis von ermittelten Ladungsträgerkonzentrationen aus Hall-Messungen zeigen, dass die extremen Seebeck-Koeffizienten in FeGa3 nicht elektronischen Ursprungs sein können, weshalb Elektronen-Korrelation ausgeschlossen wurde. Die gesamte thermische Leitfähigkeit ist bei Temperaturen kleiner 400 K nahezu ausschließlich durch den Anteil des Gitters bestimmt. Demzufolge wurde der Phonon-drag-Effekt als Ursache für die ungewöhnlich niedrigen Seebeck-Koeffizienten in FeGa3-Einkristallen von bis zu -16.000(800) µV K-1 begründet.

Im Rahmen dieser Arbeit wurde gezeigt, dass die kontrollierte Durchführung von chemischen Reaktionen in Kombination mit einer gründlichen chemischen Charakterisierung eine entscheidende Rolle bei der effizienten Präparation von (un-)bekannten Verbindungen und Materialien spielt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-155067
Date01 December 2014
CreatorsWagner-Reetz, Maik
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Juri Grin, Dr. Raul Cardoso-Gil, Prof. Dr. Juri Grin, Prof. Dr. Michael Ruck
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0995 seconds