The cost and effort estimation of projects depend on software size. A software product size is needed at as early a phase of the project as possible. Conventional Early Functional Size Estimation methods generate size at the early phase but result in subjectivity and unrepeatability due to manual calculation. On the other hand, automated Functional Size Measurement calculation approaches require constructs which are available in considerably late software development phases.
In this study we developed an approach called e-Cosmic to calculate and automate the functional size measurement based on the business processes. Functions and input and output relationship types of each function are identified in the business process model. The size of each relationship type is determined by assigning appropriate data movements based on the COSMIC Measurement Manual. Then, relationship type size is aggregated to produce the size of each function. The size of the software product is the sum of the size of these functions. Automation of this process based on business process model is performed by developing a script in the ARIS tool concept.
Three case studies were conducted to validate the proposed functional size estimation method (e-Cosmic). The size of the products in the case studies are measured manually with COSMIC FSM (Abran et al, 2007) as well as using a conventional early estimation method, called Early and Quick COSMIC FFP. We compared the results of different approaches and discussed the usability of e-Cosmic based on the findings.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12611538/index.pdf |
Date | 01 February 2010 |
Creators | Kaya, Mahir |
Contributors | Demirors, Onur |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0019 seconds