Interaction of metallic structures with electromagnetic radiation is a living topic of near-field optics including plasmonics and nanophotonics. The field-matter interaction treated on the subwavelength scale opens the path to a wide range of applications, among others to different variants of the surface enhanced spectroscopy. In this thesis we theoretically describe how the near-field properties of the metallic structures can be accessed by a probe of near-field scanning optical microscope. Formation of the signal in the near-field microscopy utilizing weakly interacting probes is discussed. Further, we elucidate the mechanism of the surface enhanced infrared spectroscopy. We utilize a model example of linear dipole antennas interacting with sample structures. A close connection is found between the spectroscopic signal and signal of the scattering type near-field optical microscopy.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:231332 |
Date | January 2014 |
Creators | Neuman, Tomáš |
Contributors | Munzar,, Dominik, Kalousek, Radek |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds