Tunnelling in urban areas causes short-term and long-term ground movements under existing buildings. Finite element analysis provides a useful option for assessing the likely extent of damage induced in these buildings. Although finite element analysis is suggested to be used in the later phases of the building damage assessment procedures employed in practice, only the effect of short-term ground movements is typically considered and there are no detailed guidelines on the specification and complexity of the modelling. This thesis addresses the tunnel-soil-building interaction problem and the effect of long-term consolidation, as well as demonstrating the application of 3D finite element analysis with appropriate simplifications for practical assessment purposes. Finite element models are developed to quantify the effect of shallow tunnelling on an example masonry building founded on strip footings, considering both single- and twin-tunnel scenarios in a typical London soil profile. Total stress and effective stress analyses are adopted with specific modelling procedures to focus on the short-term and long-term response respectively. The analyses use a non-linear model for the masonry, and allow slippage and gapping at the soil-footing interface. Two advanced constitutive models for the soil (the extended Mohr-Coulomb model and the modified two-surface kinematic hardening model) are implemented with customized stress update schemes. The finite element results present the interaction between the soil and the building by comparing with the greenfield ground response. The horizontal coupling between the foundation and the ground is shown to be relatively weak. The dominant deformation mode of the building varies with the tunnel configuration (i.e. single or twin tunnels) and the tunnel eccentricity. Strain localization is found around the explicitly modelled window and door openings. The long-term consolidation is sensitive to the permeability of the tunnel lining. The building response to long-term ground movements is further affected by the tunnel-tunnel interaction in the case of twin-tunnel configuration. Performing 3D analysis of a single facade and foundation provides useful damage predictions, without the need to model a complete building. The proposed result processing methods such as characteristic strain and damage bar chart are practical tools for assessment. The study highlights some limitations of the elastic beam assessment method, which is often adopted in the early phase of the damage assessment process.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:757836 |
Date | January 2018 |
Creators | Yiu, Wing Nam |
Contributors | Burd, Harvey ; Zdravkovic, Lidija ; Chatzis, Manolis ; Martin, Chris |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:3c300067-bc24-4312-97d9-f92a3d37abc6 |
Page generated in 0.0017 seconds