Return to search

Temperature Effect on the Soil Water Retention Characteristic

abstract: The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available. / Dissertation/Thesis / M.S. Civil Engineering 2011

Identiferoai:union.ndltd.org:asu.edu/item:9456
Date January 2011
ContributorsElkeshky, Maie Mohamed (Author), Zapata, Claudia E (Advisor), Houston, Sandra (Committee member), Kavazanjian, Edward (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format101 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds