Return to search

Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. In controlling bead-up and roll-off characteristics of water droplets the contact angle and contact angle hysteresis were very important and we investigated the determining conditions on different model surfaces with micro- and nanostructures. Two governing equations were proposed, one for contact angle based on Laplace pressure and one for contact angle hysteresis based on Young-Dupré equation. Based on these understanding on superhydrophobicity, possible applications of the superhydrophobicity for self-cleaning and water repellency were explored and application related technical issues were addressed.
Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. Silica surfaces with excellent UV stability were prepared. UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures.
Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment.
Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plasma etching to generate enough surface roughness of silica spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed and the test results showed that the surface is among the most robust surfaces for the superhydrophobic surfaces we prepared and currently reported in literature.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/26641
Date10 November 2008
CreatorsXiu, Yonghao
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0024 seconds