SARAIVA, Kátia Daniella da Cruz. Respostas moleculares e fisiológicas envolvidas com tolerância a estresses isolados e combinados de salinidade e temperatura elevada em dois genótipos de Sorghum bicolor (L.) Moench. 2017. 387 f. Tese (Doutorado em Bioquímica)-Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Coordenação PGBioquímica (pg@bioquimica.ufc.br) on 2017-11-29T18:03:01Z
No. of bitstreams: 1
2017_tese_kdcsaraiva.pdf: 15687626 bytes, checksum: ac56bd3bdd7e24b9f4693d2a36e2b37d (MD5) / Approved for entry into archive by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-12-01T14:52:46Z (GMT) No. of bitstreams: 1
2017_tese_kdcsaraiva.pdf: 15687626 bytes, checksum: ac56bd3bdd7e24b9f4693d2a36e2b37d (MD5) / Made available in DSpace on 2017-12-01T14:52:47Z (GMT). No. of bitstreams: 1
2017_tese_kdcsaraiva.pdf: 15687626 bytes, checksum: ac56bd3bdd7e24b9f4693d2a36e2b37d (MD5)
Previous issue date: 2017 / Abiotic stresses represent a grave challenge for agricultural productivity, especially in arid and semi-arid regions, which are often exposed to salinity, drought and high temperatures. In order to overcome this issue, studies focused on the identification of stress tolerance mechanisms and genotypes with high capability of growing under stressful conditions have become more and more significant. This research was developed in order to identify molecular, biochemical and physiological mechanisms involved in the acclimatization of sorghum (Sorghum bicolor (L.) Moench) plants to salinity and high temperature, isolated or combined. Transcriptomical, physiological and biochemical essays were performed in order to identify responses of tolerance to the abiotic stresses, utilizing two genotypes of sorghum with differential tolerance to salt stress as experimental model: CSF20 (tolerant) and CSF18 (sensitive). Data showed clearly that CSF20 plants exhibited better responses to the isolated stresses of high temperature and salinity, whereas, under the combination of stresses, this result was observed in CSF18 plants. Under salinity, a better photosynthetic performance of CSF20 plants was emphasized by a high PSII photochemical efficiency (↑ΔF/Fm’, ↑ETR and ↑qp), by the carboxilation of Rubisco and by greater photosynthetic pigments contents. Such responses were followed by increases in the expression of genes that codify enzymes related to chlorophyll biosynthesis (HEMA1) and carbon metabolism (for instance, Rubisco genes RBCS1A and RBCL). CSF20 plants also restricted excessive accumulation of Na+ ions in citosol of leaf cells, probably due to mechanisms of compartimentalization of this ion into the vacuoles, because there was a higher expression of NHX2 gene in photosynthetic tissues. Allied to that, GPOD and CAT enzymes were considerably activated under stressful conditions, a response correlated with a positive modulation of genes that codify and signal antioxidant compounds (NOA1, MPK1, CHS and genes of the carotenoid biosynthetic pathway). As a result, it was observed a minor oxidative damage to membranes (↓MDA e ↓VE) and higher biomass accumulation after 12 days of salinity. In this genotype, genes related to ABA and H2O2 signaling, RBOHD, CIPK and several transcription factors (TFs) might have participated in the complex network of responses that led to a higher tolerance to salt stress. In contrast, a higher sensibility of CSF18 plants to salt stress was assigned to a lower efficiency of the photosynthetic apparatus, highlighted by the greatest inhibitions in A, ΔF/Fm’, ETR and qp parameters. A lower PSII photochemical efficiency might have promoted an excessive accumulation of ROS, which caused oxidative damage to cell membranes, especially in the photosynthetic apparatus, including degradation of chlorophyll and carotenoids. In order to repair structural damages to chloroplasts electron transport chain, CSF18 plants activated the expression of several genes related to photosystems I and II (PSI and PSII) repair/reconstruction; However, this mechanism did not seem to be sufficient to mitigate damages to the photosynthetic apparatus, as CO2 assimilation rates were drastically inhibited, and a greater alternative electron drainage (↑ETR/A) was noted. Moreover, plants of the salt-sensitive genotype also activated mechanisms to control Na+ accumulation, perhaps by the recirculation of this ion through HKT transporters, once HKT1 gene was overexpressed under stress; yet, this mechanism was not efficient to prevent Na+ accumulation at toxic levels in leaf tissues. When plants were submitted to heat stress (high temperature), CO2 assimilation rates of both genotypes were increased or unaltered in comparison to the control treatment during the whole assessed period (12 and 24 h of stress); however, higher photosynthetic rates under stress were found in CSF20 plants. This response was related to a high PSII photochemical efficiency (↑ΔF/Fm’, ↑ETR and ↑qp), and coupled with an increase in the expression of genes associated with carbon and amino acid metabolism. In addition, CSF20 plants activated an array of mechanisms in order to alleviate oxidative damage and to modulate stress tolerance responses, including: (i.) transcriptional (CAT1, CAT2, PER17, other peroxidases, ascorbate/glutathione cycle, carotenoids, polyamines, P5CS2 and TRX-M4) and functional (↑CAT and ↑GPOD) regulation; (ii.) expression of genes that codify chaperones and heat stress proteins (HSPs); and (iii.) activation of signaling pathways involving H2O2, MAPK (MKK2, MKK6), RBOHE and various TFs (WRKYs). On the other hand, although photosynthetic rates of CSF18 plant underwent little or no alteration by the stress, it was observed high degradation of photosynthetic pigments and oxidative damage to cell membranes; at the same time, genes related to reconstruction/repair of PSI and PSII had their expression augmented under high temperatures, a sign of sensitivity to excessive heat. Such reconstruction mechanism seemed to have reverted, at least in part, the deleterious effects of heat stress on the photosynthetic machinery, for the photochemical efficiency of PSII remained almost unaltered. Curious results were noted under combined stress, as the application of high temperature apparently increased the harmful effects of salt stress, but with higher intensity in CSF20 plants. In this group of plants, severe reductions in CO2 assimilation rate arose from stomatal and non-stomatal factors, such as: (i.) degradation of photosyntetic pigments, and hence of PSI and PSII, highlighted by a massive increase in the expression of genes related to photosystem structure and chlorophyll metabolism; (ii.) increase of Na+ transport via transpiration flow and an excessive Na+ accumulation in leaves; and (iii.) activation of a large number of genes related to biosynthetic pathways and other metabolic processes (carbon metabolism, starch, sucrose and amino acids) which, probably depleted NADPH and ATP supplies. Nevertheless, the massive activation of signaling and biosynthesis pathways did not result in efficient responses to lessen the deleterious effects of the combination of salinity and high temperture. Thus, CSF20 plants signalized to the transition from vegetative phase to reproductive phase (increased expressions of TPR, ABH1, Vps51/Vps67, AGL2 and REV1 genes) and activated senescence genes. (SAG20, among others). Conversely, a better acclimatization of CSF18 plants to combined stress, in comparison to CSF20 plants, was correlated with a higher efficiency of the photosynthetic apparatus (↑CO2 ↑ΔF/Fm’ and ↑ETR) and with the activation of efficient mechanisms for reducing ROS production and oxidative damage, mainly by the non-photochemical dissipation of photosynthetic electrons (↑NPQ and ↓ETR/A) and antioxidant enzymes (↑APX and ↑CAT). This phenomenon was followed by an increase in the expression of genes that codify molecules involved in energy dissipation (NPQ1 and ZEP genes) and in the antioxidant defense system (APX4, CAT1, CAT2, C4H, CAD, CRT1 and peroxidases). All these responses were results of specific modulations in signaling pathways (RBOHD, MKK6 and MPK20), TFs (WRKY genes) and decisive processes for the acclimatization to the combined stress, as well as the osmotic adjustment (P5CS2 and TPS6 genes) and others (E3 SUMO-protein ligase genes). These data clearly emphasize that tolerance/susceptibility of sorghum plants to salinity and high temperature vary widely, depending on the genotype and on the interaction between the stresses. In all cases, the responses to the stresses here studied are multifactorial, and the efficiency of the photosynthetic machinery represents a crucial factor for the acclimatization of plants to adverse conditions. Lastly, genes suitable for utilization in plant breeding programs are indicated, aiming for tolerance to isolated and combined abiotic stresses. / Os estresses abióticos constituem um desafio severo para a produtividade agrícola, especialmente nas regiões áridas e semiáridas, as quais estão frequentemente expostas à salinidade, seca e altas temperaturas. Para contornar esse problema, estudos voltados para a identificação de mecanismos de tolerância ao estresse, bem como de genótipos com elevada capacidade de crescer sob condições estressantes têm se tornado cada vez mais relevantes. Essa pesquisa foi desenvolvida para identificar mecanismos moleculares, bioquímicos e fisiológicos envolvidos na aclimatação de plantas de sorgo (Sorghum bicolor (L.) Moench) aos estresses isolados e combinados de salinidade e temperatura elevada. Ensaios transcriptômicos (via sequenciamento de RNA – RNA-seq), fisiológicos e bioquímicos foram confrontados para identificar respostas de tolerância aos estresses abióticos, utilizando como modelo experimental plantas de dois genótipos de sorgo forrageiro dotados de tolerância diferencial ao estresse salino, CSF20 (tolerante) e CSF18 (sensível). Os dados demonstraram claramente que plantas CSF20 apresentaram melhores respostas frente aos estresses isolados de temperatura elevada e salinidade; ao passo que, sob estresse combinado, esse fenômeno foi observado nas plantas CSF18. Sob salinidade, o melhor desempenho fotossintético das plantas CSF20 foi evidenciado pela alta eficiência fotoquímica do PSII (↑ΔF/Fm’, ↑ETR e ↑qp) e de carboxilação da Rubisco, e pelos maiores teores de pigmentos fotossintéticos. Tais respostas foram acompanhadas por incrementos na expressão de genes que codificam para a síntese de clorofilas (HEMA1) e metabolismo do carbono (por exemplo, os genes RBCS1A e RCBL da Rubisco). Plantas CSF20 também restringiram o acúmulo excessivo de Na+ no citosol das folhas, provavelmente por mecanismos de compartimentação desse íon nos vacúolos, pois houve maior expressão do gene NHX2 nos tecidos fotossintetizantes. Associado a isso, as enzimas CAT e GPOD foram ativadas consideravelmente sob condições de estresse, uma resposta correlacionada com a modulação positiva dos genes que codificam e sinalizam compostos antioxidantes (NOA1, MPK1, CHS e genes das vias de biossíntese de carotenoides). Como resultado, houve menor dano oxidativo as membranas (↓MDA e ↓VE) e maior acúmulo de biomassa após 12 dias de salinidade. Nesse genótipo, os genes relacionados à sinalização via ABA, H2O2, RBOHD, CIPK e inúmeros fatores de transcrição (FTs) podem ter participado da rede intricada de respostas que resultou na maior tolerância ao estresse salino. Contrariamente, a maior sensibilidade das plantas CSF18 ao estresse salino foi atribuída a menor eficiência do aparato fotossintético, evidenciada pelas maiores reduções nos parâmetros de A, ΔF/Fm’, ETR e qp. A menor eficiência fotoquímica do PSII pode ter promovido um acúmulo excessivo de EROs, que resultou em danos oxidativos às membranas celulares, principalmente no aparato fotossintético, incluindo degradação da clorofila e de carotenoides. Na tentativa de reparar os danos estruturais à cadeia de transporte de elétrons (CTE) dos cloropastos, plantas CSF18 ativaram a expressão de inúmeros genes relacionados à reestruturação/reparo dos fotossistemas I e II (PSI e PSII); contudo, esse mecanismo parece não ter sido suficiente para mitigar os danos ao aparato fotossintético, pois as taxas de assimilação de CO2 foram drasticamente reduzidas e houve um maior indicativo de dreno alternativo de elétrons (↑ETR/A). Além disso, plantas do genótipo sensível à salinidade também ativaram mecanismos para controlar o acúmulo de Na+, provavelmente pela recirculação desse íon através dos transportadores HKT, uma vez que o gene HKT1 foi super expresso sob estresse; entretanto, esse mecanismo não foi eficiente para evitar o acúmulo de Na+ em níveis tóxicos nos tecidos foliares. Quando as plantas foram submetidas ao estresse térmico (temperatura elevada), as taxas de assimilação de CO2 de ambos os genótipos foram aumentadas ou inalteradas em relação ao controle, durante todo o período de tempo analisado (12 e 24 h de estresse); no entanto, as maiores taxas fotossintéticas sob estresse foram registradas nas plantas CSF20. Essa resposta foi atribuída a alta eficiência fotoquímica do PSII (↑ΔF/Fm’, ↑ETR e ↑qp) e acompanhada do aumento na expressão de genes envolvidos com o metabolismo do carbono e aminoácidos. Adicionalmente, plantas CSF20 ativaram um arsenal de mecanismos para atenuar os danos oxidativos e modular respostas de tolerância ao estresse, incluindo: (i.) regulação funcional (↑CAT e ↑GPOD) e transcricional (CAT1, CAT2, PER17, outras peroxidases, ciclo ascorbato/glutationa, carotenoides, poliaminas, P5CS2 e TRX-M4) de antioxidantes enzimáticos e não enzimáticos; (ii.) expressão de genes que codificam chaperonas e proteínas do choque térmico (HSPs); e (iii.) ativação de vias de sinalização envolvendo H2O2, MAPK (MKK2, MKK6), RBOHE e diversos FTs (WRKYs). Por outro lado, embora as taxas fotossintéticas das plantas CSF18 tenham sofrido pouca ou nenhuma alteração pelo estresse, observou-se alta degradação de pigmentos fotossintéticos e danos oxidativos às membranas celulares; bem como genes relacionados à reestruturação/reparo do PSI e PSII tiveram a expressão aumentada sob condições de altas temperaturas, um indicativo de sensibilidade ao excesso de calor. Tal mecanismo de reestruturação parece ter revertido, pelo menos em parte, os efeitos deletérios do estresse térmico sobre a maquinaria fotossintética, pois a eficiência fotoquímica do PSII permaneceu quase que inalterada. Resultados interessantes foram observados sob estresse combinado, pois a aplicação da temperatura elevada parece ter intensificado os efeitos nocivos do estresse salino, porém, com maior magnitude nas plantas CSF20. Nesse grupo de plantas, as reduções drásticas nas taxas de assimilação de CO2 foram decorrentes de fatores estomáticos e não estomáticos, envolvendo: (i.) degradação dos pigmentos fotossintéticos e, consequentemente, do PSI e PSII, evidenciada pelo aumento massivo na expressão de genes estruturais dos fotossistemas e metabolismo da clorofila; (ii.) aumento do transporte de Na+ via fluxo transpiratório e acúmulo excessivo dele nas folhas; e (iii.) ativação de um grande número de genes de vias de biossíntese e outros processos metabólicos (metabolismo do carbono, amido, sacarose e aminoácidos) que, provavelmente, exauriram as reservas de NADPH e ATP. Contudo, a ativação massiva de rotas de sinalização e de biossíntese não resultou em respostas efetivas para mitigar os efeitos deletérios do estresse combinado de salinidade e temperatura elevada. Assim, plantas CSF20 sinalizaram para a transição da fase vegetativa para a reprodutiva (aumentaram a expressão de genes TPR, ABH1, Vps51/Vps67, AGL2 e REV1) e ativaram genes de senescência (SAG20, dentre outros). De modo contrário, a melhor aclimatação das plantas CSF18 ao estresse combinado, em relação às plantas CSF20, foi correlacionada com a maior eficiência do aparato fotossintético (↑A, ↑ΔF/Fm’ e ↑ETR) e com a ativação de mecanismos eficientes para reduzir a produção de EROs e danos oxidativos, principalmente pela dissipação não fotoquímica de elétrons fotossintéticos (↑NPQ e ↓ETR/A) e enzimas antioxidantes (↑APX e ↑CAT). Esse fenômeno foi acompanhado pelo aumento na expressão de genes que codificam moléculas envolvidas na dissipação de energia (genes NPQ1 e ZEP) e no sistema de defesa antioxidante (APX4, CAT1, CAT2, C4H, CAD, CRT1 e peroxidases). Todas essas respostas foram resultado de modulações específicas em vias de sinalização (RBOHD, MKK6 e MPK20), FTs (genes WRKYs) e em processos determinantes para aclimatação ao estresse combinado, tais como no ajustamento osmótico (genes P5CS2 e TPS6) e outros (gene E3 SUMO-protein ligase). Os dados evidenciam claramente que a tolerância/susceptibilidade de plantas de sorgo à salinidade e temperatura elevada varia amplamente, dependendo do genótipo e da interação entre os estresses. Em todos os casos, as respostas aos estresses estudados são multifatoriais e a eficiência da maquinaria fotossintética constitui um fator determinante para a aclimatação das plantas a condições adversas. Por fim, são indicados genes candidatos para utilização em programas de melhoramento genético de plantas visando à tolerância aos estresses abióticos isolados e combinados.
Identifer | oai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/28259 |
Date | January 2017 |
Creators | Saraiva, Kátia Daniella da Cruz |
Contributors | Costa, José Hélio |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0168 seconds