The ability to efficiently and sparsely represent seismic data is becoming an increasingly important problem in geophysics. Over the last thirty years many transforms such as wavelets, curvelets, contourlets, surfacelets, shearlets, and many other types of ‘x-lets’ have been developed. Such transform were leveraged to resolve this issue of sparse representations. In this work we compare the properties of four of these commonly used transforms, namely the shift-invariant wavelets, complex wavelets, curvelets and surfacelets. We also explore the performance of these transforms for the problem of recovering seismic wavefields from incomplete measurements.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/4171 |
Date | 11 1900 |
Creators | Lebed, Evgeniy |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0017 seconds