Depuis une quinzaine d'années, la mise en ?uvre par commutation électrique de structures ferroélectriques périodiquement polarisées (PP), à température ambiante, occupe une place importante parmi les techniques de fabrication de dispositifs pour la génération de la seconde harmonique et l'oscillation paramétrique optique. Il s'agit de mettre en ?uvre les effets non- linéaires (NL) qui apparaissent dans les cristaux ferroélectriques. Parmi ces différents matériaux, c'est le niobate de lithium LiNbO3 (LN) qui est le plus utilisé. Dans un premier temps, les efforts de recherche se sont concentrés sur la fabrication de ces structures et la mise au point de dispositifs de conversion. Ce n'est que récemment que des études ont été consacrées, plus spécifiquement, à la caractérisation de ces structures en domaines. Dans ce travail nous montrons comment la microsonde Raman peut être utilisée pour la caractérisation des microstructures de domaines ferroélectriques antiparallèles dans du niobate de lithium périodiquement polarisé (PPLN). L'intensité Raman de modes transverses et longitudinaux de phonons optiques a été enregistrée à travers les murs séparant les domaines ferroélectriques, à la fois, en surface et en volume. Les diverses contributions à la polarisabilité et à l'intensité diffusée Raman, linéaire et non linéaire, sont analysées afin de comprendre les variations du spectre Raman observées dans les différentes configurations et géométries des échantillons. Le changement des intensités intégrées à travers ces structures de domaines est attribué à l'influence des contraintes mécaniques et à un champ de charges d'espace surfacique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00354835 |
Date | 10 June 2008 |
Creators | Hammoum, Rachid |
Publisher | Université de Metz |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds