Return to search

Aqueous Solvation Method for Recombinant Spider Silk Proteins

Two major hurdles face the production of recombinant spider silk protein (rSSp) based materials. First, the production of sufficient quantities of rSSp has proven difficult due to their highly repetitive nature and protein size (>250kDa). Secondly, rSSp and native silks are practically insoluble in water based solutions, necessitating the use of harsh organic solvents that can remain in the material after production. While others are working on solving production problems, this dissertation demonstrates a novel aqueous solubilization method that is rapid (<1 minute) and results in near 100% solubilization of the rSSp. From this new solubilization method films, foams, gels (hydrogels and lyogels), adhesives, coatings and fibers have been produced as well as the previously unreported sponge. All of these novel materials were derived from entirely aqueous solutions with and without minor additives to influence the final physical state of the rSSp.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-5296
Date01 May 2015
CreatorsJones, Justin A.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds