Spider silk is known for its extraordinary material properties, being both very strong and extensible. Even though the fibers outperform many synthetic and natural materials, it is impractical to collect industrial amounts of silk from spiders due to their cannibalistic and venomous nature; they cannot be farmed like the commercial silk worm Bombyx mori. Thus, scientists have turned to molecular and engineering techniques to replicate the spider's silk and spinning apparatus. In the current literature there is no detailed protocol on the production of consistent synthetic fibers. To accomplish this, the fibroins and natural spinning apparatus were taken apart and analyzed in order to develop a protocol that biomimics the spider's system. The laboratory procedure, using the natural process as an example, was simplified to: protein production, purification, concentration, fiber spinning, and lastly post spin draw. Large quantities of truncated MaSp I spidroin (spider fibroin) was purified from E. coli and successfully spun into fibers using customized spinning, spooling, and stretching apparatuses. The final fiber products displayed mechanical properties that were comparable to other reported synthetic fibers, but more importantly also displayed low experimental variability between samples. The protocol developed in this study can be further used to characterize other spidroins and silk proteins, and can be further advanced to produce even better fibers with enhanced properties.
Identifer | oai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1796 |
Date | 01 January 2011 |
Creators | Hsia, Yang |
Publisher | Scholarly Commons |
Source Sets | University of the Pacific |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of the Pacific Theses and Dissertations |
Page generated in 0.0018 seconds