In this doctoral thesis, the design of algorithms enabling the implementation of a fully automatic system for vertebrae segmentation in 3D computed tomography (CT) image data of possibly incomplete spines, in patients with bone metastases and vertebral compressions is presented. The proposed algorithm consists of several fundamental problems: spine detection and its axis determination, individual vertebra localization and identification (labeling), and finally, precise segmentation of vertebrae. The detection of the spine, specifically identifying its ends, and determining the course of the spinal canal, combines several advanced methods, including deep learning-based approaches. A novel growing circle method has been designed for tracing the spinal cord canal. Further, the innovative spatially variant filtering of brightness profiles along the spine axis leading to intervertebral disc localization has been proposed and implemented. The discs thus obtained are subsequently identified via comparing the tested vertebrae and model of vertebrae provided by a machine-learning process and optimized by dynamic programming. The final vertebrae segmentation is provided by the deformation of the complete-spine intensity model, utilizing a proposed multilevel registration technique. The complete proposed algorithm has been validated on testing databases, including also publicly available datasets. This way, it has been proven that the newly proposed algorithms provide results at least comparable to other author’s algorithms, and in some cases, even better. The main strengths of the algorithms lie in high reliability of the results and in the robustness to even strongly distorted vertebrae of oncological patients and to the occurrence of artifacts in data; moreover, they are capable of identifying the vertebra labels even in incomplete spinal CT scans. The strength is also in the complete automation of the processing and in its relatively low computational complexity enabling implementation on standard PC hardware. The system for fully automatic localization and labeling of distorted vertebrae in possibly incomplete spinal CT data is presented in this doctoral thesis. The design of algorithms enabling the implementation utilizes several novel approaches, which were presented at international conferences and published in the journal Jakubicek et al. (2020). Based on the results of the experimental validation, the proposed algorithms seem to be routinely usable and capable of providing fully acceptable input data (identified and precisely segmented vertebrae) as needed in the subsequent automatic spine bone lesion analysis.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:433053 |
Date | January 2020 |
Creators | Jakubíček, Roman |
Contributors | Flusser, Jan, Kozubek, Michal, Jan, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds