Return to search

Authentication and SQL-Injection Prevention Techniques in Web Applications

This dissertation addresses the top two “most critical web-application security risks” by combining two high-level contributions.
The first high-level contribution introduces and evaluates collaborative authentication, or coauthentication, a single-factor technique in which multiple registered devices work together to authenticate a user. Coauthentication provides security benefits similar to those of multi-factor techniques, such as mitigating theft of any one authentication secret, without some of the inconveniences of multi-factor techniques, such as having to enter passwords or biometrics. Coauthentication provides additional security benefits, including: preventing phishing, replay, and man-in-the-middle attacks; basing authentications on high-entropy secrets that can be generated and updated automatically; and availability protections against, for example, device misplacement and denial-of-service attacks. Coauthentication is amenable to many applications, including m-out-of-n, continuous, group, shared-device, and anonymous authentications. The principal security properties of coauthentication have been formally verified in ProVerif, and implementations have performed efficiently compared to password-based authentication.
The second high-level contribution defines a class of SQL-injection attacks that are based on injecting identifiers, such as table and column names, into SQL statements. An automated analysis of GitHub shows that 15.7% of 120,412 posted Java source files contain code vulnerable to SQL-Identifier Injection Attacks (SQL-IDIAs). We have manually verified that some of the 18,939 Java files identified during the automated analysis are indeed vulnerable to SQL-IDIAs, including deployed Electronic Medical Record software for which SQL-IDIAs enable discovery of confidential patient information. Although prepared statements are the standard defense against SQL injection attacks, existing prepared-statement APIs do not protect against SQL-IDIAs. This dissertation therefore proposes and evaluates an extended prepared-statement API to protect against SQL-IDIAs.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8963
Date17 June 2019
CreatorsCetin, Cagri
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations

Page generated in 0.0033 seconds