Return to search

ELECTRON TUNNELING STUDIES OF MATERIALS FOR SUPERCONDUCTING RADIO FREQUENCY APPLICATIONS

Radio frequency (RF) cavities are the foundational infrastructure which facilitates much of the fundamental research conducted in high energy particle physics. These RF cavities utilize their unique shape to produce resonant electromagnetic fields used to accelerate charged particles. Beside their core role in fundamental physics research, RF cavities have found application in other disciplines including material science, chemistry and biology which take advantage of their unique light sources. Industry has been keen on taking advantage of accelerator technology for a multitude of applications. Particle accelerators like the one found at Jefferson Lab’s Continuous Electron Beam Accelerator Facility must produce stable beams of high energy particles which is an incredibly costly endeavor to pursue. With the gargantuan size of these facilities, the cost of high-quality beam production is a matter of great importance. The quest to find highly efficient RF cavities has resulted in the widespread use of superconducting radio frequency (SRF) cavities which are the most efficient resonators that exploit a superconductor’s incredibly low AC surface resistance. While metals like Cu are up to the demanding job of RF cavity particle acceleration, their efficiency at transferring RF power to the particle beam is low when they are compared with SRF Nb cavities. Nb is the standard material for all SRF cavity technology particularly for its reproducibly low surface resistance, comparatively high transition temperature and thermodynamic critical field. Using superconducting Nb is not without its drawbacks. Keeping hundreds of Nb cavities in their superconducting state under extreme RF conditions is quite a daunting task. It requires the normal state not nucleate during operation. This is achieved by producing high-quality cavities with as few defects and impurities as possible while also keeping the cavities at low temperature, usually 2K. Again, due to the sheer scale of the facilities, hundred million-dollar cryogenic plants are required to handle the heat loads during SRF cavity operation. This means even small increases in maximum accelerating gradients or decrease in cavity surface resistance results in a sizably reduced operation cost. Considerable effort has been put forth to increase the efficiency of Nb cavities toward and even beyond the theoretical maximum accelerating gradients and quality factor for a clean superconductor. Recently, a new method to produce high quality factor cavities has emerged that involves nitrogen doping the cavity. The mechanism by which N doping causes the improvement is still not well understood, but the experimental research described in this dissertation shines some light into the mechanisms behind such a drastic improvement. These insights are universal for all superconductors and may prove useful for SRF cavities beyond Nb. With Nb approaching its fundamental limits, new materials are being proposed to increase the performance of future SRF cavities which MgB2 finds itself among. MgB2 is a two-band superconductor that possesses many properties that are very attractive for the next generation of SRF cavities. One of the most important properties is MgB2’s comparatively large critical temperature which in part predicts it will have a lower surface resistance than Nb at higher operating temperatures. Such behavior of MgB2 may unlock the possibility of using cryocoolers instead of costly liquid helium plants for large scale industrial use. This dissertation starts with an introduction to superconductivity, its theory, and application to SRF cavities as well as the open questions that can be addressed in Nb and the next generation of SRF materials. A description of the experimental techniques of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy is presented. Our experimental investigation into Nb SRF cavity cutouts starts with a discussion of the material’s limitations for SRF applications with an emphasis on the proximity effect which arises at the surface of this material due to its myriad of naturally forming oxides. The results of our scanning tunneling microscopy measurements for typically prepared Nb and nitrogen doped Nb follows and comparisons are made which show that the surface oxides are fundamentally different between these samples likely resulting in the profound enhancement of the cavity’s quality factor. Experimental investigation into the native oxide of hot spot nitrogen doped Nb shows a degraded oxide and superconducting properties as compared with the cold spot. The dissertation continues with a brief introduction to MgB2, followed by our scanning tunneling and electron tunneling insights into MgB2. The dissertation is concluded with a summary of our investigations and broader impact of our research on the SRF community. / Physics

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/508
Date January 2019
CreatorsLechner, Eric
ContributorsIavarone, Maria, Xi, Xiaoxing, Napolitano, Jim, Gurevich, A. Vl. (Aleksandr Vladimirovich), 1954-
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format115 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/490, Theses and Dissertations

Page generated in 0.0093 seconds