Return to search

Single-Phase, Single-Switch, Sensorless Switched Reluctance Motor Drive Utilizing a Minimal Artificial Neural Net

Artificial Neural Networks (ANNs) have proved to be useful in approximating non- linear systems in many applications including motion control. ANNs advocated in switched reluctance motor (SRM) control typically have a large number of neurons and several layers which impedes their real time implementation in embedded sys- tems. Real time estimation at high speeds using these ANNs is diffcult due to the high number of operations required to process the ANN controller. An insuffcient availability of time between two sampling intervals limits the available computation time for both processing the neural net and the other functions required for the motor drive. One ideal application of ANNs in SRM control is rotor position estimation. Due to reliability issues, elimination of the rotor position sensors is absolutely required for high volume, high speed and low cost applications of SRM's. ANNs provide a means by which drive designers can implement position sensorless drive technology that is both robust and easily implemented.

It is demonstrated that a new and novel ANN configuration can be implemented for accurate rotor position estimation in a sensorless SRM drive. Consisting of just 4 neurons, the neural estimator is the smallest of its kind for SRM rotor position estimation. The breakthrough that provided the reduction was the addition of a non- linear input. Typical input spaces for SRM position neural estimators consist of both current,and fux-linkage. The neural network was trained on-line using these inputs and a third, non-linear input provided by a preprocessed product of the two typical inputs. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34735
Date20 September 2005
CreatorsHudson, Christopher Allen
ContributorsElectrical and Computer Engineering, Ramu, Krishnan, Baumann, William T., Kachroo, Pushkin
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationThesis.pdf

Page generated in 0.0028 seconds