Return to search

Molecular and cellular mechanisms of calcium sensing in CD146+ perivascular cells commitment to osteoblast lineage cells. / 鈣感應信號調控CD146陽性血管周皮細胞分化為成骨細胞的分子細胞學機理研究 / Gai gan ying xin hao diao kong CD146 yang xing xue guan zhou pi xi bao fen hua wei cheng gu xi bao de fen zi xi bao xue ji li yan jiu

Kwok, Po Lam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 124-130). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.i / Abstract --- p.ii / 中文摘要 --- p.v / Acknowledgements --- p.vii / List of Figures --- p.viii / List of Tables --- p.x / Table of Abbreviations --- p.xii / Contents --- p.xix / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- The Biology of Human Umbilical Cord Perivascular Cells (HUCPVs) and Their Potential Applications in Tissue Regeneration / Chapter 2.1 --- INTRODUCTION --- p.5 / Chapter 2.1.1 --- Stem cells --- p.5 / Chapter 2.1.2.1 --- Embryonic stem cells --- p.6 / Chapter 2.1.2.2 --- iPS cells --- p.7 / Chapter 2.1.2.3 --- Somatic stem cells --- p.8 / Chapter 2.1.3 --- Mesenchymal stem cells --- p.9 / Chapter 2.1.4 --- Pericytes --- p.11 / Chapter 2.1.5 --- CD146 positive MSCs --- p.12 / Chapter 2.1.6 --- Human umbilical cord perivascular cells (HUCPVs) --- p.13 / Chapter 2.1.7 --- The biology of stem cell microenvironment (niche) --- p.14 / Chapter 2.1.8 --- Current applications of HUCPVs --- p.17 / Chapter 2.1.9 --- Regenerative medicine --- p.17 / Chapter 2.1.10 --- Applications of stem cells in bone regeneration --- p.19 / Chapter 2.2 --- MATERIALS AND METHODS --- p.22 / Chapter 2.2.1 --- Cell culture --- p.22 / Chapter 2.2.2 --- Preparation of Human Umbilical Cord Perivascular (HUCPV) cells --- p.22 / Chapter 2.2.2.1 --- Isolation of Human Umbilical Cord Perivascular (HUCPV) cells from human umbilical cord --- p.22 / Chapter 2.2.2.2 --- Purification of HUCPV cells --- p.23 / Chapter 2.2.3 --- Immunocytochemsitry --- p.24 / Chapter 2.2.4 --- Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) --- p.25 / Chapter 2.2.4.1 --- Isolation of total cellular RNA --- p.25 / Chapter 2.2.4.2 --- Complementary DNA (cDNA) synthesis --- p.26 / Chapter 2.2.4.3 --- Polymerase chain reaction (PCR) --- p.26 / Chapter 2.2.5 --- Quantitative real-time reverse transcriptionpolymerase chain reaction (qRT-PCR) --- p.30 / Chapter 2.2.6 --- In vitro differentiation assays --- p.33 / Chapter 2.2.6.1 --- Osteogenic differentiation --- p.33 / Chapter 2.2.6.2 --- Adipogenic differentiation --- p.33 / Chapter 2.2.6.3 --- Chondrogenic differentiation --- p.34 / Chapter 2.2.6.4 --- In vitro chondrogenic differentiation on gelfoam® --- p.34 / Chapter 2.2.7 --- Cytochemistry staining --- p.35 / Chapter 2.2.7.1 --- Alkaline Phosphatase staining --- p.35 / Chapter 2.2.7.2 --- Alizarin Red S staining --- p.35 / Chapter 2.2.7.3 --- Oil Red O staining --- p.36 / Chapter 2.2.7.4 --- Alcian Blue staining --- p.36 / Chapter 2.2.8 --- Scanning electron microscopy (SEM) --- p.37 / Chapter 2.2.9 --- Transmission electron microscopy (TEM) --- p.37 / Chapter 2.2.10 --- Paraffin tissue embedding --- p.38 / Chapter 2.2.10 --- Haematoxylin and Eosin staining --- p.38 / Chapter 2.3 --- RESULTS --- p.40 / Chapter 2.3.1 --- Isolation and purification of HUCPVs --- p.40 / Chapter 2.3.2 --- Osteogenic differentiation of HUCPVs under normoxia --- p.41 / Chapter 2.3.3 --- Osteogenic differentiation of HUCPVs under hypoxia --- p.42 / Chapter 2.3.4 --- Adipogenic differentiation of HUCPVs --- p.43 / Chapter 2.3.5 --- Chondrogenic differentiation of HUCPVs --- p.43 / Chapter 2.3.6 --- Chondrogenic differentiation of HUCPVs on gelfoam® --- p.44 / Chapter 2.4 --- DISCUSSION --- p.59 / Chapter Chapter 3 --- Calcium and Calcium-sensing Receptor (CaSR) in osteogenesis / Chapter 3.1 --- INTRODUCTION --- p.62 / Chapter 3.1.1 --- Metabolism of calcium --- p.62 / Chapter 3.1.2 --- Calcium-sensing receptor --- p.64 / Chapter 3.1.2.1 --- The molecular structure of calcium-sensing Receptor (CaSR) --- p.64 / Chapter 3.1.2.2 --- The expression pattern of calciumsensing receptor (CaSR) --- p.67 / Chapter 3.1.2.3 --- The physiological function of calcium-sensing receptor in different tissues or organs --- p.68 / Chapter 3.1.2.4 --- Regulatory role of calcium-sensing receptor in calcium sensing and homeostasis --- p.71 / Chapter 3.1.2.5 --- The role of calcium-sensing receptor in diseases --- p.72 / Chapter 3.1.2.6 --- Genetic animal models targeting calciumsensing receptor --- p.73 / Chapter 3.1.2.7 --- Calcium-sensing receptor in mesenchymal lineage Differentiation --- p.76 / Chapter 3.1.2.8 --- The role of calcium-sensing receptor in the skeleton --- p.76 / Chapter 3.1.3 --- Calcium-sensing receptor related pathway --- p.78 / Chapter 3.1.3.1 --- Cyclic AMP pathway --- p.78 / Chapter 3.1.3.2 --- Cyclic AMP response element-binding protein (CREB) --- p.80 / Chapter 3.2 --- MATERIALS AND METHODS --- p.83 / Chapter 3.2.1 --- Preparation of primary mouse osteoblasts (MOB) from long bone --- p.83 / Chapter 3.2.2 --- Preparation of primary mouse osteoblasts (CMOB) from calvaria --- p.84 / Chapter 3.2.3 --- Immunocytochemistry --- p.84 / Chapter 3.2.4 --- Osteogenic differentiation --- p.85 / Chapter 3.2.3 --- Quantitative real-time reverse transcriptionpolymerase chain reaction (qRT-PCR) --- p.85 / Chapter 3.2.4 --- Cell proliferation measurement by BrdU ELISA (colorimetric) assay --- p.85 / Chapter 3.2.5 --- Western blotting analysis --- p.86 / Chapter 3.2.5.1 --- Preparation of the protein lysate --- p.86 / Chapter 3.2.5.2 --- Protein quantitation --- p.86 / Chapter 3.2.5.3 --- SDS-PAGE --- p.87 / Chapter 3.2.5.4 --- Protein transfer --- p.87 / Chapter 3.2.5.5 --- Immunodetection --- p.88 / Chapter 3.2.6 --- cAMP EIA assay --- p.89 / Chapter 3.3 --- RESULTS --- p.91 / Chapter 3.3.1 --- "Expression of CD 146 and CaSR in HUCPVs, primary mouse long bone osteoblasts and MC3T3-E1 cell line" --- p.91 / Chapter 3.3.2 --- The effect of calcium treatment on the osteogenic differentiation potential of MC3T3-E1 cells under normoxia --- p.91 / Chapter 3.3.3 --- The effect of calcium treatment on the osteogenic differentiation potential of MC3T3-E1 cells under hypoxia --- p.92 / Chapter 3.3.4 --- The effect of calcium treatment on cell proliferation in primary mouse long bone osteoblasts --- p.93 / Chapter 3.3.5 --- The effect of calcium treatment on calcium-sensing receptor expression in primary mouse long bone osteoblasts --- p.94 / Chapter 3.3.6 --- The effect of calcium treatment on calcium-sensing receptor expression in HUCPVs --- p.95 / Chapter 3.3.7 --- The effect of calcium treatment on calcium-sensing receptor expression in primary mouse calvarian osteoblasts --- p.96 / Chapter 3.3.8 --- The effect of calcium treatment on cyclic AMP levels in primary mouse long bone osteoblasts --- p.97 / Chapter 3.4 --- DISCUSSION --- p.117 / Chapter Chapter 4 --- General Discussions --- p.121 / References --- p.124 / Appendices --- p.131

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327507
Date January 2011
ContributorsKwok, Po Lam., Chinese University of Hong Kong Graduate School. Division of Biomedical Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxvi, 135 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds