Indiana University-Purdue University Indianapolis (IUPUI) / High-efficiency transduction of hematopoietic stem cells (HSCs) by recombinant adeno-associated virus serotype 2 (AAV2) vectors is limited by (i) inadequate expression of cellular receptor/co-receptors for AAV2; (ii) impaired intracellular trafficking and uncoating in the nucleus; (iii) failure of the genome to undergo second-strand DNA synthesis; and (iv) use of sub-optimal promoters. Systematic studies were undertaken to develop alternative strategies to achieve high-efficiency transduction of primary murine HSCs and lineage-restricted transgene expression in a bone marrow transplant model in vivo. These included the use of: (i) additional AAV serotype (AAV1, AAV7, AAV8, AAV10) vectors; (ii) self-complementary AAV (scAAV) vectors; and (iii) erythroid cell-specific promoters. scAAV1 and scAAV7 vectors containing an enhanced green-fluorescent protein (EGFP) reporter gene under the control of hematopoietic cell-specific enhancers/promoters allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice.
Self complementary AAV vectors containing an anti-sickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer, or the human parvovirus B19 promoter at map-unit 6 (B19p6) were tested for their efficacy in a human erythroid cell line (K562), and in primary murine hematopoietic progenitor cells (c-kit+, lin-). These studies revealed that (i) scAAV2-beta-globin vectors containing only the HS2 enhancer are more efficient than ssAAV2-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (ii) scAAV-beta-globin vectors containing only the B19p6 promoter are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (iii) scAAV2-B19p6-beta-globin vectors in K562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit+, lin- cells, yield efficient expression of the beta-globin protein. These studies suggest that the combined use of scAAV serotype vectors and the B19p6 promoter may lead to expression of therapeutic levels of beta-globin gene in human erythroid cells, which has implications in the potential gene therapy of beta-thalassemia and sickle cell disease.
Identifer | oai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/1869 |
Date | 18 March 2009 |
Creators | Maina, Caroline Njeri |
Contributors | Srivastava, Arun, Clapp, D. Wade, Yoder, Mervin C., He, Johnny J. |
Source Sets | Indiana University-Purdue University Indianapolis |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds