Return to search

Characterization and Therapeutic Potential of Human Amniotic Fluid Cells in Mediating Neuroprotection

Brain injury, either surgically induced or as a result of trauma or stroke, is one of the leading causes of death and disability worldwide. Since transplantable stem cell sources are showing a great deal of promise and are actively being pursued to provide neuroprotection post-injury, in this body of work, we set out to characterize and examine the therapeutic potential of amniotic fluid derived (AF) cells as a potential cell source for cell-based therapies in mediating neuroprotection post-injury. Despite their heterogeneity, we found that AF cells are mainly epithelial in origin and express various genes involved in stem cell maintenance and neural commitment. A very small subset of AF cells also express pluripotency markers OCT4a, SOX2 and NANOG, which can be enriched for by single cell cloning. SOX2 positive clones have the capacity to give rise to a neuronal phenotype, in neural induction conditions, which can be used to examine the neural differentiation capabilities of AF cells. Subsequently, we examined the ability of AF cells to mediate a neuroprotective effect in a surgically induced brain injury model through gap junctional-mediated direct cell-cell communication and as a vehicle for GDNF delivery post-injury. AF cells express high levels of CX43 and are able to establish functional gap junctional intercellular communication (GJIC) with cortical astrocytes. We report an induction of Cx43 expression in astrocytes following injury and demonstrate, for the first time, CX43 expression at the interface between implanted AF cells and host astrocytes. In an effort to boost host endogenous neuroprotective mechanisms post-injury, via neurotrophic factor delivery, we engineered AF cells to secrete GDNF (AF-GDNF). GDNF pre-treatment significantly increased AF cell and cortical neuron survival rates following exposure to hydrogen peroxide. AF-GDNF cells, seeded on polyglycolic acid (PGA) scaffolds, survived longer in serum-free conditions and continued to secrete GDNF post-implantation activating the MAPK/ERK signaling pathway in host neural cells in the peri-lesion area. Despite some promising trends, we did not observe significant behavioural improvements following AF-GDNF/PGA implantation nor reduced lesion volume during the 7 day time-frame. In conclusion, through GJIC with cortical astrocytes and delivery of exogenous neurotrophic factors, AF cells hold great promise in mediating neuroprotection post-injury.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/26157
Date19 September 2013
CreatorsJezierski, Anna
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0019 seconds