<p>The department REI/EP at DaimlerChrysler Research and Technology and the Laboratory for Efficient Energy Systems at Trier University of Applied Science, are developing control functions and fuel optimal strategies for low speed conditions. The goal of this thesis project was to further develop the fuel optimal operating strategies, and implement them into a test vehicle equipped with a dSPACE environment. This was accomplished by making optimal reference signals using dynamic programming. Optimal, in this case, means signals that results in low fuel consumption, comfortable driving, and a proper distance to the preceding vehicle. These reference signals for the velocity and distance are used by an MPC controller (Model Predictive Control) to control the car. In every situation a suitable reference path is chosen, depending on the velocities of both vehicles, and the distance. The controller was able to follow another vehicle in a proper way. The distance was kept, the driving was pleasant, and it also seems like it is possible to save fuel. When accepting some deviations in distance to the preceding car, a fuel reduction of 8 % compared to the car in front can be achieved.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-381 |
Date | January 2005 |
Creators | Johansson, Ann-Catrin |
Publisher | Linköping University, Department of Electrical Engineering, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0032 seconds