External fixators are used in a treatment of complicated fractures and their properties have a crucial impact on treatment quality. Therefore, this thesis is concerned with a biomechanical study of a bone (tibia) with applied external fixators via strain-stress analysis and their comparison with a state of tibia without applied fixator (physiological state). After creating the volume models of geometry of tibia and seven variants of external axial fixators, the corresponding finite element method (FEM) models are created. The analysis of tibia without applied fixator and tibia with all studied fixators is made for three states of load which correspond to characteristic load states during the first stage of treatment. The strain-stress analysis is made using finite element method. Furthermore, the methods of displacement and rotation evaluation during loading are proposed. One can conclude from the results of the strain-stress analysis how the different variants of fixators prevent the displacement and rotation of the bone during the different load states and the comparisons with the physiological state of bone are made. Bone tissue loading is determined from the distribution and the values of the first and the third principal stresses. Finally, comparing the results of all variants the influence of the fixator length, the gap between the fixation elements near the fracture, the number and the setting of the fixation elements on the fixation properties is analysed.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234176 |
Creators | Mrázek, Michal |
Contributors | Horyl, Petr, Janíček, Přemysl, Florian, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds