In this thesis the recently developed duality covariant approach to string and Mtheory is investigated. In this formalism the U-duality symmetry of M-theory or Tduality symmetry of Type II string theory becomes manifest upon extending coordinates that describe a background. The effective potential of Double Field Theory is formulated only up to a boundary term and thus does not capture possible topological effects that may come from a boundary. By introducing a generalised normal we derive a manifestly duality covariant boundary term that reproduces the known Gibbons-Hawking action of General Relativity, if the section condition is imposed. It is shown that the full potential can be represented as a sum of the scalar potential of gauged supergravity and a topological term that is a full derivative. The latter is written totally in terms of the geometric flux and the non-geometric Q-flux integrated over the doubled torus. Next we show that the Scherk-Schwarz reduction of M-theory extended geometry successfully reproduces known structures of maximal gauged supergravities. Local symmetries of the extended space defined by a generalised Lie derivatives reduce to gauge transformations and lead to the embedding tensor written in terms of twist matrices. The scalar potential of maximal gauged supergravity that follows from the effective potential is shown to be duality invariant with no need of section condition. Instead, this condition, that assures the closure of the algebra of generalised diffeomorphisms, takes the form of the quadratic constraints on the embedding tensor.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:667151 |
Date | January 2013 |
Creators | Musaev, Edvard T. |
Publisher | Queen Mary, University of London |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://qmro.qmul.ac.uk/xmlui/handle/123456789/8610 |
Page generated in 0.0028 seconds