Climate change is an important topic of today's discussion where scientists have determined that a large proportion of the increasing global temperatures is a product of the increasing greenhouse gases in the atmosphere. Globally it is expected that the share of renewable power generation is set to increase with 50 % between 2019 and 2024. Together with cost reductions and advancements in renewable energy technologies this opens up an opportunity for companies and market actors to reevaluate their power generation systems. By utilising a polygeneration system an energy system is able to combine multiple energy sources to produce several energy services in an efficient, cost effective and sustainable way. This thesis analyses the possibilities of implementing alternative power generation systems for a unit in the Swedish Armed Forces. In close conjunction with the Swedish Armed Forces works The Swedish Defence Material Administration with the primary assignment to procure, develop and deliver equipment and services to the Swedish defence. In this thesis, a Ground Based Air Defence Operations Center is used as a case study which utilises diesel gensets for power generation. The energy system of the unit is analysed as well as the power, heat and cooling demands. Different scenarios based on current and future developments in energy technology are modelled in the microgrid software Homer Pro. The system model 1 for the scenarios BAU, AF1 and AF2 requires no modification of the gensets in the current power generation system. Instead alternative fuel types are modelled where a biodiesel B20 blend is used for AF1 and 1 hydrogenated vegetable oil is used in the AF2 scenario. In the scenarios using the system model 2, FS1 is utilising the current genset upgraded with a heat recovery system running on hydrogenated vegetable oil. The FS2 scenario proposes a microturbine with a capacity of 30 kW as an alternative to the current genset. In the FIFS scenario a PEM fuel cell is modelled, also having a capacity of 30 kW. All of the system model 2 configurations included a battery system, a membrane distiller for water purification and a thermal storage tank as additional units. The main results from the thesis show that all scenarios except for FS2 reduce the annual emissions from the unit. However, this brings a higher net present value for the systems as well as a higher yearly operation cost. The results indicate that the FS1 scenario is able to decrease the CO2 emissions with almost 50 % with adjustments to the current gensets as well as providing the unit with excess heat for water purification and storage in the thermal tank. / Klimatförändringen är ett viktigt ämne idag där forskare har fastställt att en stor andel av ökningen av medeltemperaturen beror på ökade växthusgaser i atmosfären. Globalt förväntas kraftgenerering från förnybara källor att öka med 50 % mellan åren 2019 till 2024. Detta i samband med kostnadsminskningar och framsteg inom förnybara energiteknologier leder till en möjlighet för företag och aktörer att omvärdera sina energisystem. Genom att använda ett polygenereringssystem kan ett energisystem kombinera flera energikällor för att producera fler energitjänster på ett hållbart och kostnadseffektivt sätt. Detta examensarbete undersöker möjligheten att implementera alternativa kraftgenereringssystem för en enhet i Försvarsmakten. I ett nära samarbete med Försvarsmakten arbetar Försvarets Materielverk med det primära uppdraget att upphandla, utveckla och leverera materiel och tjänster till det svenska försvaret. I detta arbete har en luftvärnscentral som nyttjar dieselgeneratorer för kraftproduktion använts som en fallstudie. Enhetens energisystem har analyserats och därtill även el-, värme- och kylbehovet för denna enhet. Olika scenarier baserat på nuvarande och framtida utveckling inom energiteknik har modellerats i microgridprogrammet Homer Pro. För system modellerna 1 i scenarierna BAU, AF1 och AF2 görs inga modifieringar av befintliga system utöver bränsletyp. Scenario AF1 använder en biodieselblandning B20 och i AF2 drivs systemet med vätgasbehandlad växtolja. För modellerna som använder sig utav system modellerna 2 är FS1 ett scenario baserat på en uppgradering av nuvarande kraftenhet genom en värmeåtervinningsenhet. FS2 föreslår en alternativ kraftenhet i form av en mikroturbin med en kapacitet på 30 kW. En PEM-bränslecell är modellerad i scenario FIFS som även den har en kapacitet på 30 kW. Tillhörande komponenter till system modellerna 2 är ett batterisystem, en vattenreningsenhet och en varmvattentank. Resultaten visar att alla scenarier förutom FS2 minskar de årliga utsläppen från enheten. Detta på en bekostnad av en högre nuvärdeskostnad och en högre årlig kostnad för driften av systemen. Från simuleringen visar resultaten även att FS1 kan bidra till att minska utsläppen med nästan 50 % genom justeringar av nuvarande kraftenhet samtidigt som systemet levererar överskottsvärme för vattenrening och lagring i varmvattentanken.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-277757 |
Date | January 2020 |
Creators | Klipic, Alma, Eken, Sidar |
Publisher | KTH, Kraft- och värmeteknologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-ITM-EX ; 2020:377 |
Page generated in 0.0554 seconds