Return to search

FABRICATION AND STUDY OF AC ELECTRO-OSMOTIC MICROPUMPS

In this thesis, microelectrode arrays of micropumps have been designed, fabricated and characterized for transporting microfluid by AC electro-osmosis (ACEO). In particular, the 3D stepped electrode design which shows superior performance to others in literature is adopted for making micropumps, and the performance of such devices has been studied and explored. A novel fabrication process has also been developed in the work, realizing 3D stepped electrodes on a flexible substrate, which is suitable for biomedical use, for example glaucoma implant.

There are three major contributions to ACEO pumping in the work. First, a novel design of 3D “T-shaped” discrete electrode arrays was made using PolyMUMPs® process. The breakthrough of this work was discretizing the continuous 3D stepped electrodes which were commonly seen in the past research. The “T-shaped” electrodes did not only create ACEO flows on the top surfaces of electrodes but also along the side walls between separated electrodes. Secondly, four 3D stepped electrode arrays were designed, fabricated and tested. It was found from the experiment that PolyMUMPs® ACEO electrodes usually required a higher driving voltage than gold electrodes for operation. It was also noticed that a simulation based on the modified model taking into account the surface oxide of electrodes showed a better agreement with the experimental results. It thus demonstrated the possibility that the surface oxide of electrodes had impact on fluidic pumping. This methodology could also be applied to metal electrodes with a native oxide layer such as titanium and aluminum. Thirdly, a prototype of the ACEO pump with 3D stepped electrode arrays was first time realized on a flexible substrate using Kapton polyimide sheets and packaged with PDMS encapsulants. Comprehensive experimental testing was also conducted to evaluate the mechanical properties as well as the pumping performance. The experimental findings indicated that this fabrication process was a promising method to create flexible ACEO pumps that can be used as medical implants and wearable devices. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2013-05-06 10:57:48.077

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/8025
Date07 May 2013
CreatorsGuo, Xin
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0117 seconds