Return to search

Inducing Superconductivity in Two-dimensional Materials

In this thesis, I firstly report high field measurements of graphene/NbN junctions, in which NbN makes edge contact to graphene. Transport measurements at zero field demonstrate clear features associated with both retro and specular Andreev reflection. By applying perpendicular magnetic field, field dependence of junction transparency at Quantum Hall (QH) / superconductor (SC) interface is calculated and explained by a picture of superposition of electron and hole edge excitation. Zeeman splitting is induced in graphene by applying in plane magnetic field. We observe changes in the Andreev reflection spectrum that are consisting with spin splitting of the graphene band structure. This edge contact technique provides the opportunity to create hybrid SC/graphene or SC/QH system to illustrate new physics such as non-Abelian zero modes of Majorana physics. Secondly, other potential material candidates for SC/graphene junctions are discussed, high field transport measurement of FeSeTe/graphene junction is discussed, Superconductor/quantum spin Hall (QSH) interface and superconductor-graphene-superconductor weak link are also discussed, respectively. At last, via contact, a new contact method for two-dimensional materials, especially air-sensitive materials is discussed, the via contact method provides a new and reliable fabrication technique for two dimensional materials.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-d8qt-1v86
Date January 2020
CreatorsWang, Da
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0022 seconds