The most-discussed pairing symmetry in Sr₂RuO₄ is chiral p-wave, pₓ ± p[sub]y, whose degeneracy is protected by the lattice symmetry. When the lattice symmetry is lowered by the application of a symmetry-breaking field, the degeneracy can be lifted, potentially leading to a splitting of the superconducting transition. To lift the degeneracy, the symmetry breaking field used in this study is uniaxial stress. Uniaxial stress generated by a piezo-electric actuator can continuously tune the electronic structure and in situ lower the tetragonal symmetry in Sr₂RuO₄. Previous studies of magnetic susceptibility and resistivity under uniaxial stress have revealed that there is a strong peak in T[sub]c when the stress is applied along the a-axis of Sr₂RuO₄. In addition, it has been proposed that the peak in T[sub]c coincides with a van Hove singularity in the band structure, and measurements of Hc₂ at the maximum T[sub]c indicate the possibility of an even parity condensate for Sr₂RuO₄ at the peak in Tc. In this thesis, the heat capacity approach is used to study the thermodynamic behavior of Sr₂RuO₄ under uniaxial stress applied along the crystallographic a-axis of Sr₂RuO₄. The first thermodynamic evidence for the peak in T[sub]c is obtained, proving that is a bulk property. However, the experimental data show no clear evidence for splitting of the superconducting transition; only one phase transition can be identified within the experimental resolution. The results impose strong constraints on the existence of a second phase transition, i.e. the size of the second heat capacity jump would be small or the second T[sub]c would have to be very close to the first transition. In addition to these results, I will present heat capacity data from the normal state of Sr₂RuO₄. The experimental results indicate that there is an enhancement of specific heat at the peak in T[sub]c, consistent with the existence of the van Hove singularity. The possibility of even parity superconductivity at the maximum T[sub]c has also been investigated. However, the heat capacity measurements are shown to be relatively insensitive to such a change, so it has not been possible to obtain strong and unambiguous evidence for whether it takes place or not.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:766890 |
Date | January 2018 |
Creators | Li, You-Sheng |
Contributors | Mackenzie, Andrew |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/16591 |
Page generated in 0.002 seconds