Cancer is the second leading cause of death in the world. It is therefore critically important to detect cancer in its early stage to significantly increase the survival rate of cancer patients. Circulating tumour cells (CTCs) are cancer cells that peel off from primary tumour and enter bloodstream in early stage of a cancer, and thus it has been established that these CTCs are reliable targets for early cancer diagnosis. However, background signal reduction and optimization of CTC capturing mechanisms are still significant challenges in CTC detections with high sensitivities and accuracies. To this end, we have developed an aptamers and dendrimers based ultra non-fouling microfluidic detection system for sensitive detections of circulating tumour cells.
More specifically, we demonstrate a simple strategy to bind PDMS and SU-8 surfaces in order to prepare a hybrid microfluidic device and subsequently modify both surfaces simultaneously using poly(amidoamine) (PAMAM), a highly hydrophilic dendrimer to improve non-fouling properties of the hybrid microfluidic channel. The resulting hybrid microfluidic system shows a remarkable non-specific adsorption suppression of 99.7% when tested with hydrophobic microbead suspension, an ultra non-fouling performance that has not been reported before. This is significantly important for detections with high sensitivities. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle are used to characterize and confirm surface modifications. In addition, we investigate the combined effects of surface properties on surface non-fouling performance to both live and dead cells. (3-aminopropyl)-trimethoxysilane (APTMS), carboxyl functionalized PAMAM dendrimer (PAMAM-COOH) and amino functionalized PAMAM dendrimer (PAMAM-NH2) are used to provide different surfaces with various surface hydrophilicity, electric charge and roughness. We show that electric charge of a surface is the most important factor influencing non- specific adsorption of live cells to the surface while hydrophilicity/hydrophobicity of a surface is the most important factor for dead cells. Atomic force microscopy, water contact angle and microscopy are used to characterize and confirm surface modifications. To further exploit and improve capturing efficiency of target cancer cells, we investigate the effect of the length of spacers that tether capturing aptamer to the microfluidic surfaces on capturing performance of CCRF-CEM circulating tumour cells. Aptamers with different lengths of thymine base spacers are immobilized onto PAMAM dendrimer modified surfaces in microfluidic channels. We demonstrate that ten thymine bases spacer has the best length for sgc8 aptamer to form its secondary structure for CCRF-CEM cell capture. Water contact angle, and microscopy are used to characterize and confirm surface modifications. Taken together, the results of this study significantly highlight the importance of different considerations on surface modification and its optimizations when designing a microfluidic system for high sensitivity detection and biosensing applications.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37892 |
Date | 17 July 2018 |
Creators | Qin, Yubo |
Contributors | Cao, Xudong |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds